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Chapter 1

Introduction and Overview

1.1 Sequential Decision Problems

The focus of this course is the solution of sequential decision problems. In such problems,
a sequence of decisions is required, where each one has partial effect on the outcome.
Sequential decision problems are common in a wide variety of application domains, that
include:

• Artificial intelligence: Robotic motion planning, mission planning, board games
(chess, backgammon), computer games (game of strategy, football).

• Operations research: Inventory control, supply chain management, project assign-
ment, scheduling of servers and customers.

• Finance: Investment strategies, financial planning, gambling.

• Communication networks and computer systems: Packet routing, flow control, cache
handling, job scheduling, power control.

• Control Engineering: High-level feedback control of dynamic systems such as land/sea/air
vehicles, chemical processes, power systems, analog amplifiers, etc.

We will examine two basic challenges in the context of these decision problems:

1. Planning: Optimal selection of the required sequence of actions (called an optimal
control policy) to minimize a specified cost function in a given system model, when
the model is known in advance.

2. Learning: When a system model is not available for the planner, it may need
to be learned during operation, by trying out different options and observing their
consequences.
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Figure 1.1: The situated agent

Our main planning tools will rely on the theory of Dynamic Programming (DP), which
offers a set of methods and algorithms for solving sequential decision problems.

Reinforcement Learning (RL) is the area of machine learning that deals with learning
by observing the consequences of different actions. The term, which is borrowed from the
behaviorist school in psychology, hints to the use of positive reinforcement to encourage
certain behaviors. It is now used in machine learning to refer generally to learning in
sequential decision processes and dynamical systems.

The situated agent viewpoint: A basic viewpoint that underlies the field of RL, espe-
cially within AI, is that of the situated agent. The agent here may be a cognitive entity or
a computer algorithm. It interacts with an external environment (the controlled system)
by observing the environment state, and taking actions. Once an action is taken a reward
signal is obtained, the system moves to a new state, and the cycle is repeated. Designing
an effective generic learning agent in such a framework may be seen as an ultimate goal in
AI, and is a major driver of RL research.

Example 1.1. The Tetris player
Consider designing an AI player for the game of Tetris. The environment here would

be the game simulator, and the environment state at a particular time corresponds to the
game board at that time, and the shape of the new piece that just arrived. Upon observing
a system state, the agent (the AI player) takes an action - it decides where on the board to
position the new piece. Consequentially, if rows on the board were cleared, the agent receives
a corresponding reward, and the the next system state is determined by the simulator.

Markov Decision Processes (MDPs) are the standard model that allows to treat these
planning and learning problems in a unified manner. An MDP describes a sequential
decision problem, with the following properties:

• A controlled dynamical system, with state-based dynamics. At each state some
decision (or action) needs to be taken, and as a consequence the system moves to the
next state.
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• A reward function is associated with state-action pair, and the system performance
is measured by the accumulated rewards.

• MDPs are especially suited to handle discrete problems (discrete state space, discrete
action set, discrete time).

• MDPs allow to model in a natural way stochastic effects, and in particular stochas-
tic system dynamics. We note that MDPs are currently the standard model for
probabilistic planning in AI.

Challenges - what makes the planning problem hard?

• Lack of a global structure - most systems of interest do not have a simple global
structure (such as that of a linear system). Therefore, planning needs to address
each state (or group of states) in a distinct way.

• Large state-spaces: Many problems of interest have a huge number of states (recall
the tetris example - how many board configurations are possible?), which makes exact
solution impossible, even with the strongest algorithms. We note that models with
a large number states are often the result of combinatorial explosion in state vectors
with a large number of components. This phenomenon is commonly known as the
curse of dimensionality.

• Large action-spaces: Some problems, especially in resource allocation, also exhibit
large action-spaces, which present additional computational challenges.

• Stochastic effects - these are successfully handled within the MDP model, although
they may add to the computational challenge.

• Uncertain or unknown environments – which leads to the application of Reinforce-
ment Learning techniques.

The computational challenge of complex problems (in particular, large state spaces)
requires the use of approximation techniques for planning. This is an active research field,
which is called Approximate Dynamic Programming (ADP) in our context. It is interesting
to note that Reinforcement Learning techniques are often used as a means for planning in
complex systems, even if the system dynamics is known.

The following diagram illustrates the relation and influence between the different dis-
ciplines involved.
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1.2 Some Illustrative Planning Examples

We next provide several examples that serve to illustrate the models involved. We start
with planning examples.

1.2.1 Shortest Path on a Graph

Finding a shortest path between a source and destination nodes (or vertices) on a weighted
graph is a generic problem with numerous applications, from routing in communication
networks to trajectory planning, puzzle solving, and general AI planning. Essentially,
Dynamic Programming based algorithms compute the distance from every node in the
graph to the destination, spreading out from the destination until the source is reached.
Specific algorithms for this problem include the Bellman-Ford algorithm, and Dijkstra’s
algorithm and its variants, such as A*. This problem is widely discussed in courses on
AI, and we will only briefly touch upon the main algorithms. We will also consider its
stochastic generalization, the Stochastic Shortest Path problem.

1.2.2 The Secretary Problem

Problem setup: We are interviewing n candidates for a job. We know that the can-
didates are strictly ordered in quality from 1 to n, but interview them in random order.
Once we interview a candidate, his or her quality can be evaluated relative to previously
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interviewed candidates. A candidate that is not hired during the interview cannot be
recalled.

The planning problem: Our goal is to find a rule for choosing a candidate, that will
maximize the chances of hiring the best one.

This problem and its generalizations have been widely studied in the operation research
and computer science literature. It is an instance of a wider class of optimal stopping
problems.

Exercise 1.1. Let Bt ∼ Bernoulli i.i.d. for all t = 1, 2, 3, . . . . Consider the empirical
average:

Xτ =
1

τ

τ∑
t=1

Bt.

where τ is a stopping time. The objective is to find a stopping rule for τ that maximizes
E[Xτ ].

1. Find a stopping rule that achieves E[Xτ ] ≥ 0.75

2. (Hard!) What is the maximal E[Xτ ] that can be achieved?

1.2.3 Inventory Management

System description: Suppose we manage a single-item inventory system with daily
orders. On the morning of each day k, we observe the current inventory xk, and can order
any quantity ak ≥ 0 of that item that arrives immediately. The daily demand for the item
is denoted Dk. Thus, the number of items sold on each day k is min{Dk, xk +ak}, and the
inventory at the end of the day is xk+1 = [xk + ak −Dk]

+. In this model we can determine
the order ak, whereas the demand Dk is uncertain and is modeled as a random variable
with known probability distribution. We assume that Dk is a sequence of independent
random variables.

Cost structure: Suppose that the cost for an order of ak is J(ak), a price P is charged
for each sold item, and a penalty C(xk + ak − Dk) is incurred for over or under demand
miss (where C(y) ≥ 0 and C(0) = 0). Therefore, the net return (or reward) for day k is

Rk = P min{Dk, xk + ak} − J(ak)− C(xk + ak −Dk).

The cumulative return is the sum of daily returns over a given period, say 1 to K.
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The planning problem: For each k = 1, . . . ,K, we observe the current inventory xk,
and need to determine the amount ak to order next. The goal is to maximize the expected
value of the cumulative return over the given period:

E(
∑K

k=1
Rk) → min

Remark 1.1. : A common policy in inventory management is the (s, S) replenishment
policy: whenever the inventory x drops below s, order S − x items. This policy can be
shown to be optimal under appropriate assumptions on the cost.

Exercise 1.2. For the single-stage problem (K = 1) with R = 0, J ≡ 0, C(y) = y2, show
that a (s, S) policy is optimal (with s = S).

1.2.4 Admission control to a queueing system

System description: Consider a single-server queue, to which jobs (or customers) arrive
sequentially. Each job has a service demand (in time unit of service) that is represented
by a random variable with known distribution. The arrival process is, say, Poisson with
rate λ. The system manager can deny admission to an arriving job.

Cost structure: Suppose that the system incurs a penalty of C per unit time for each
job waiting in the queue, and a reward R for each customer served. We wish to minimize
the expected cumulative cost over a period of time.

The planning problem: Suppose a job arrives when the queue size is x ≥ 0. Should
it be admitted or denied entry? This problem represents a basic example of queueing
control problems. A wide range of computer, communication, and service systems can be
represented by networks of queues (waiting lines) and servers. Efficient operation of these
systems gives rise to a wide range of dynamic optimization problems. These include, among
others, job admission control, job routing, server and job scheduling, and control of service
rates.

1.2.5 Stochastic scheduling

System description: Suppose we have a single server that caters to n classes of jobs,
one job at a time. Here the server may be human, a router in a communication network,
a CPU in a computer system, etc. Jobs of class i arrive as a Poisson process with rate
λi, and each requires a service duration Di (which could be random – for example, an
exponentially-distributed random variable with expected value µ−1

i ).

Cost structure: Jobs of class i incur a waiting cost Ci per unit time of waiting for
service, and a reward Ri for completing service.
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The planning problem: Suppose that the server becomes available at an instance t,
and sees the state vector X(t) = (x1(t), . . . , xn(t)), where xi is the number of class i jobs
waiting for service. Which job class should the server attend next?

1.3 Some Illustrative Learning Examples

The following examples address the learning problem.

1.3.1 The Multi-Armed Bandit (MAB) problem

This is an important problem in statistics and machine learning. The exotic name derives
from casino-like slot machines, which are also known as ”single-armed bandits”. Suppose we
are faced with N different arms (slot machines), which may have different win probabilities
(for simplicity assume 0-1 results, with obvious generalizations). These probabilities are
not known to us. There are two different goals in this problem:

1. To identify the best arm (pure exploration).

2. To maximize our gains over a large time horizon (exploration vs. exploitation).

This model, under the second objective, presents in its purest form the exploration
vs. exploitation dilemma, which is fundamental in Reinforcement Learning: While each
arm may be optimal and should be sufficiently tried out, we should also focus at some point
on the arm that seems to be the best. This tradeoff must be addressed by an appropriate
exploration strategy.

We note that this problem can be considered as a special case of the MDP model, with
a single state (i.e., static environment). Its original motivation was related to experimental
drug (medicine) administration. Its current popularity in Machine Learning owes to recent
on-line application such as ad posting: choosing the right class of ads to post in a given
space or context to maximize revenue (or ”click” count).

1.3.2 Learning to Play Chess / Backgammon

Current AI programs for chess playing essentially rely on extensive search in the game tree,
starting from the current board position. That search is aided by an evaluation function
(the heuristic, or value function), which provides a numerical value to each board position
that estimates it strength (say, the likelihood of a win).

Suppose for simplicity that the opponent’s playing strategy is known, so that the prob-
lem reduces to a single-player planning problem. The problem, of course, is huge number
of states (board positions), which rules out an exact and complete solution. Therefore,
partial solutions guided by heuristic and empirical rules must be used.

Machine learning offers a set of tools to improve the performance of a given AI player, by
data-based tuning key parameter of the algorithm. Such improvements are often imperative
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for achieving state-of-the-art performance. Specific topics in which RL techniques have
been successfully applied include:

• Value function learning (by self-play and record analysis).

• Powerful heuristics for guiding the tree search.

These techniques have been applied in the games of Backgammon, Chess, and recently Go
and Poker.

1.3.3 Skill Learning in Robotics

Suppose we wish to program a robot to juggle a ball on a racket, or to walk efficiently. We
can start by programming the robot as best we can, but in most cases we will not be able
to obtain fully efficient operation that way, and many ”fine tunings” will be required. One
of the major approaches for improvement is to equip the robot with learning capabilities,
so that it can improve its performance over time. We can distinguish here between two
learning goals:

a. Short term learning, or adaptivity - adapting to changing environment conditions
(such as the weight of the ball, wind, etc.).

b. Skill learning - acquiring and improving the basic capability to perform certain mo-
tions or tasks in an efficient manner.

A major Reinforcement Learning approach to these learning problems is a set of meth-
ods called direct policy search. Here the required task or motion is parameterized by a
vector of continuous parameters, which are tuned by simulation or during actual operation
using gradient-based methods. We will touch upon this important topic towards the end
of the course.

1.4 Mathematical Tools

We briefly mention the main mathematical tools that will be used throughout the course.

1. Concentration inequalities

2. MDPs - dynamic programming

3. Optimization - algorithms and theory

4. Generalization and risk (PAC)

5. Approximation theory

6. Convergence of stochastic processes
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Chapter 2

Deterministic Decision Processes

In this chapter we introduce the dynamic system viewpoint of the optimal planning prob-
lem. We restrict the discussion here to deterministic (rather than stochastic) systems, and
consider the finite-horizon decision problem and its recursive solution via finite-horizon
Dynamic Programming.

2.1 Discrete Dynamic Systems

We consider a discrete-time dynamic system, of the form:

xk+1 = fk(xk, uk), k = 0, 1, 2, . . . , N − 1

where

• k is the time index.

• xk ∈ Xk is the state variable at time k, and Xk is the set of possible states at time k.

• uk ∈ Uk is the control variable at time k, and Uk is the set of possible control values
(or actions) at time k.

• fk : Xk×Uk → Xk+1 is the state transition function, which defines the state dynamics
at time k.

• N > 0 is the time horizon of the system. It can be finite or infinite.

Remark 2.1. More generally, the set Uk of available actions may depend on the state at
time k, namely: uk ∈ Uk(xk) ⊂ Uk.

Remark 2.2. The system is in general time-varying. It is called time invariant if fk, Xk, Uk
do not depend on the time k. In that case we write

xk+1 = f(xk, uk), k = 0, 1, 2, . . . , N − 1; xk ∈ X, uk ∈ U(xk).
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Remark 2.3. The state dynamics may be augmented by an output equation:

yk = hk(xk, uk)

where yk is the system output, or the observation. In most of this course we implicitly
assume that yk = xk, namely, the current state xk is fully observed.

Example 2.1. Linear Systems
The best known example of a dynamic system is that of a linear time-invariant system,

where:
xk+1 = Axk +Buk

with xk ∈ Rn, uk ∈ Rm. Here the state and action spaces are evidently continuous (as
opposed to discrete).

Example 2.2. Finite models
Our emphasis here will be on finite state and action models. A finite state space contains

a finite number of points: Xk = {1, 2, . . . , nk}. Similarly, a finite action space implies a
finite number of control values at each stage:

Uk(x) = {1, 2, . . . ,mk(x)}, x ∈ Xk

Notation for finite models: When the state and action spaces are finite, it is common
to denote the state by sk (instead of xk) and the actions by ak (instead of uk). That is, the
system equations are written as: sk+1 = fk(sk, ak), k = 0, 1, 2, . . . , N − 1 with sk ∈ Sk,
ak ∈ Ak(xk) ⊂ Ak. We will adhere to that notation in the following.

Graphical description: Finite models (over finite time horizons) can be represented by
a corresponding decision graph:

Here:

• N = 2, S0 = {1, 2}, S1 = {b, c.d}, S2 = {2, 3},
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• A0(1) = {1, 2}, A0(2) = {1, 3}, A1(b) = {α}, A1(c) = {1, 4}, A1(d) = {β}

• f0(1, 1) = b, f0(1, 2) = d, f0(2, 1) = b, f0(2, 3) = c, f1(b, α) = 2, etc.

Definition 2.1. Feasible Path
A feasible path for the specified system is a sequence (s0, a0, . . . , sN−1, aN−1, sN ) of states
and actions, such that sk ∈ Ak(sk) and sk+1 = fk(sk, ak).

2.2 The Finite Horizon Decision Problem

We proceed to define our first and simplest planning problem. For that we need to specify
a performance objective for our model, and the notion of control policies.

2.2.1 Costs and Rewards

The cumulative cost: Let hN = (s0, a0, . . . , sN−1, aN−1, sN ) denote an N -stage path
for the system.. To each feasible path hN we wish to assign some cost CN = CN (hN ).

The standard definition of the cost CN is through the following cumulative cost func-
tional :

CN (hN ) =
N−1∑
k=0

ck(sk, ak) + cN (sN )

Here:

• ck(sk, ak) is the instantaneous cost or single-stage cost at stage k, and ck is the
instantaneous cost function.

• cN (sN ) is the terminal cost, and cN is the terminal cost function.
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Note:

• The cost functional defined above is additive in time. Other cost functionals are
possible, for example the max cost, but additive cost is by far the most common and
useful.

• We shall refer to CN as the cumulative N -stage cost, or just the cumulative cost.

Our objective is to minimize the cumulative cost CN , by a proper choice of actions.
We will define that goal more formally below.

Cost versus reward formulation: It is often more natural to consider maximizing
reward rather than minimizing cost. In that case, we define the cumulative N -stage return
function:

RN (hN ) =

N−1∑
k=0

rk(sk, ak) + rN (sN )

Here and rk is the running reward, and rN is the terminal reward. Clearly, minimizing CN
is equivalent to maximizing RN , if we set:

rk(s, a) = −ck(s, a) and rN (s) = −cN (s).

2.2.2 Optimal Paths

Our first planning problem is the following Path Optimization Problem:

• For a given initial state s0, find a feasible path hN = (s0, a0, . . . , sN−1, aN−1, sN ) that
minimizes the cost functional CN (hN ), over all feasible paths hN .

Such a path is called an optimal path from s0.
A more general notion than a path is that of a control policy, that specifies the action

to be taken at each state. Control policies will play an important role in our Dynamic
Programming algorithms, and are defined next.

2.2.3 Control Policies

Definition 2.2. A control policy, denoted π, specifies for each state a unique action to
be taken at this state. Specifically, a control policy π is a sequence π = (π0, . . . , πN−1) of
decision functions, where πk : Sk → Ak, and πk(s) ∈ Ak(s). The action to be taken at time
k in state sk is given as ak = πk(sk)
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Classes of control policies Observe that we allow the function πk policy to depend
on the time k. Such time-dependent policies are also called non-stationary. On the other
hand, we confine ourselves here to policies that are:

• Markovian: The action ak is a function of the current state sk only, and not on
previous states and actions. Non-Markovian policies: also called history-dependent
policies, will be extensively used in the learning part of the course.

• Deterministic: More general policies may use randomization in the selection of
actions. Such randomized policies are also used in learning algorithms, as well as in
game problems.

Control policies and paths: As mentioned, a control policy specifies an action for each
state, whereas a path specifies an action only for states along the path. This distinction is
illustrated in the following figure.

Induced Path: A control policy π, together with an initial state s0, specify a feasible
path hN = (s0, a0, . . . , sN−1, aN−1, sN ). This path may be computed recursively using
ak = πk(sk) and sk+1 = fk(sk, ak), for k = 0, 1, . . . , N − 1.

Remark 2.4. Suppose that for each state sk, each action ak ∈ Ak(sk) leads to a different
state sk+1 (i.e., at most one edge connects any two states). We can then identify each
action ak ∈ Ak(s) with the next state sk+1 = fk(s, ak) it induces. In that case a path may
be uniquely specified by the state sequence (s0, s1, . . . , sN ).

2.2.4 Optimal Control Policies

Definition 2.3. A control policy π is called optimal if, for each initial state s0, it induces
an optimal path hN from s0.
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An alternative definition can be given in terms of policies only. For that purpose, let
hN (π; s0) denote the path induced by the policy π from s0. For a given return functional
RN (hN ), denote RN (π; s0) = RN (hN (π; s0)) That is, RN (π; s0) is the cumulative return
for the path induced by by π from s0.

Definition 2.4. A control policy π is called optimal if, for each initial state s0, it holds
that RN (π; s0) ≥ RN (π̃; s0) for any other policy π̃.

Equivalence of the two definitions can be easily established (exercise). An optimal
policy is often denoted by π∗.

The standard finite-horizon planning problem: Find a control policy π for
the N -stage decision problem with the cumulative return (or cost) function.

The naive approach to finding an optimal policy: For finite models (i.e., finite
state and action spaces), the number of feasible paths (or control policies) is finite. It is
therefore possible, in principle, to enumerate all N-stage paths, compute the cumulative
return for each one, and choose the one which gives the largest return. Let us evaluate
the number of different paths and control policies. Suppose for simplicity that number of
states at each stage is the same: |Xk| = n, and similarly the number of actions at each
state is the same: |Ak(x)| = m (with m ≤ n) . The number of feasible N-stage paths for
each initial state is seen to be mN . The number of different policies is mnN . For example,
for a fairly small problem with N = n = m = 10, we obtain 1010 paths for each initial
state (and 1011 overall), and 10100 control policies. Clearly it is not possible to enumerate
them all.

Fortunately, Dynamic Programming offers a drastic simplification of the computational
complexity for this problem.

2.3 Finite Horizon Dynamic Programming

The Dynamic Programming (DP) algorithm breaks down theN -stage decision problem into
N sequential single-stage optimization problems. This results in dramatic improvement in
computation efficiency.

The DP technique for dynamic systems is based on a general observation called Bell-
man’s Principle of Optimality. Essentially it states the following (for deterministic prob-
lems):

• Any sub-path of an optimal path is itself an optimal path between its end
point.

Applying this principle recursively from the last stage backward, obtains the (backward)
Dynamic Programming algorithm. Let us first illustrate the idea with following example.
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Example 2.3. Shortest path on a decision graph: Suppose we wish to find the shortest
path (minimum cost path) from the initial node in N steps.

The boxed values are the terminal costs at stage N , the other number are the link costs.
Using backward recursion, we may obtain that the minimal path costs from the two initial
states are 7 and 3, as well as the optimal paths and an optimal policy.

We can now describe the DP algorithm. Recall that we consider the dynamic system

sk+1 = fk(sk, ak), k = 0, 1, 2, . . . , N − 1

sk ∈ Sk, ak ∈ Ak(sk)

and we wish to maximize the cumulative return:

RN =

N−1∑
k=0

rk(sk, ak) + rN (sN )

The DP algorithm computes recursively a set of value functions Vk : Sk → R , where
Vk(sk) is the value of an optimal sub-path hk:N = (sk, ak, . . . , sN ) that starts at sk.

Algorithm 2.1. Finite-horizon Dynamic Programming

1. Initialize the value function: VN (s) = rN (s), s ∈ SN .

2. Backward recursion: For k = N − 1, . . . , 0, compute

Vk(s) = max
a∈Ak

{
rk(s, a) + Vk+1(fk(s, a))

}
, s ∈ Sk.
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3. Optimal policy: Choose any control policy π = (πk) that satisfies:

πk(s) ∈ arg max
a∈Ak

{
rk(s, a) + Vk+1(fk(s, a))

}
, k = 0, . . . , N − 1.

Proposition 2.1. The following holds for finite-horizon dynamic programming:

1. The control policy π computed above is an optimal control policy for the N -stage
decision problem.

2. V0(s) is the optimal N-stage return from initial state s0 = s:

V0(s) = max
π

RN (π; s), ∀s ∈ S0.

We will provide a proof of this result in a later lecture, for the more general stochastic
MDP model. For the time being, let us make the following observations:

1. The algorithm involves visits each state exactly once, proceeding backward in time.
For each time instant (or stage) k, the value function Vk(s) is computed for all states
s ∈ Sk before proceeding to stage k − 1.

2. The recursive equation in part 2 of the algorithm, along with similar equations in the
theory of DP, is called Bellman’s equation.

3. Computational complexity: There is a total of nN states (excluding the final one),
and in each we need m computations. Hence, the number of required calculations is
mnN . For the example above with m = n = N = 10, we need O(103) calculations.

4. A similar algorithm that proceeds forward in time (from k = 0 to k = N) can
be devised. We note that this will not be possible for stochastic systems (i.e., the
stochastic MDP model).

5. The celebrated Viterbi algorithm is an important instance of finite-horizon DP.
The algorithm essentially finds the most likely sequence of states in a Markov chain
(sk) that is partially (or noisily) observed. The algorithm was introduced in 1967
for decoding convolution codes over noisy digital communication links. It has found
extensive applications in communications, and is a basic computational tool in Hidden
Markov Models (HMMs), a popular statistical model that is used extensively in
speech recognition and bioinformatics, among other areas.

Historical Notes:

• Dynamic Programming was popularized in the 1950’s and 1960’s by Richard Bell-
man (1920-1984), an American mathematician (of Jewish descent). Bellman, who
coined the term Dynamic Programming, formulated the general theory and proposed
numerous applications in control and operations research.
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• Andrew Viterbi (born 1935) is an American professor of electric engineer, a pioneer
in the field of digital communications, and co-founder of Qualcomm Inc. (together
with Irwin Jacobs). He has had close ties with the Technion, and has made many
contributions to our department.
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Chapter 3

Other Deterministic Dynamic
Programming Algorithms

Dynamic Programming (DP) can be used to solve various computational problems that
do not fall into the dynamic system framework which is our focus in this course. In this
lecture we will briefly consider DP solutions to several such problems. Our treatment will
be brief and informal.

This lecture is partly based on Chapter 15 of the textbook:
T. Cormen, C. Leliserson, R. Rivest and C. Stein, Introduction to Algo-

rithms, 2nd ed., MIT Press, 2001.
Some of the problems below are nicely explained in http://people.cs.clemson.edu/

~bcdean/dp_practice/

3.1 Specific Computational Problems

Dynamic Programming can be seen as a general approach for solving large computation
problems by breaking them down into nested subproblems, and recursively combining the
solutions to these subproblems. A key point is to organize the computation such that each
subproblem is solved only once.

In many of these problems the recursive structure is not evident or unique, and its
proper identification is part of the solution.

3.1.1 Maximum contiguous sum

Given: A (long) sequence of n real numbers a1, a2, . . . , an (both positive and negative).

Goal: Find V ∗ = max
1≤i≤j≤n

j∑̀
=i

a`.
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An exhaustive search needs to examine O(n2) sums. Can this be done more efficiently?

DP Solution in linear time: Let Mk = max
1≤i≤k

k∑̀
=i

a` denote the maximal sum over all

contiguous subsequences that end exactly at ak.
Then

M1 = a1,

and
Mk = max{Mk−1 + ak, ak}.

We may compute Mk recursively for k = 2 : n. The required solution is given by

V ∗ = max{M1,M2, . . . ,Mn},

This procedure requires only O(n) calculations, i.e., linear time.

Note: The above computation gives the value of the maximal sum. If we need to know
the range of elements that contribute to that sum, we need to keep track of the indices
that maximized the various steps in the recursion.

3.1.2 Longest increasing subsequence

Given: A sequence of n real numbers a1, a2, . . . , an.

Goal: Find the longest strictly increasing subsequence (not necessarily contiguous). E.g,
for the sequence (3, 1, 5, 3, 4), the solution is (1, 3, 4). Observe that the number of subse-
quences is 2n, therefore an exhaustive search is inefficient.

DP solution: Define Lj = longest strictly increasing subsequence ending at position j.
Then

L1 = 1,

Lj = max{Li : i < j, ai < aj}+ 1, j > 1

and the size of the longest subsequence is L∗ = max1≤j≤n(Lj).
Computing Lj recursively for j = 1 : n gives the result with a running time1 of O(n2).

3.1.3 An integer knapsack problem

Given: A knapsack (bag) of capacity C > 0, and a set of n items with respective sizes
S1, . . . , Sn and values (worth) V1, . . . , Vn. The sizes are positive and integer-valued.

1We note that this can be further improved to O(n logn). See Chapter 15 of the ‘Introduction to
Algorithms’ textbook for more details.
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Goal: Fill the knapsack to maximize the total value. That is, find the subset A ⊂
{1, . . . , n} of items that maximize ∑

i∈A
Vi,

subject to ∑
i∈A

Si ≤ C.

Note that the number of item subsets is 2n.

DP solution: Let M(i, k) = maximal value for filling exactly capacity k with items from
the set 1 : i. If the capacity k cannot be matched by any such subset, set M(i, k) = −∞.
Also set M(0, 0) = 0, and M(0, k) = −∞ for k ≥ 1. Then

M(i, k) = max{M(i− 1, k) , M(i− 1, k − Si) + Vi},

which can be computed recursively for i = 1 : n, k = 1 : C. The required value is obtained
by M∗ = max0≤k≤CM(n, k).
The running time of this algorithm is O(nC). We note that the recursive computation
of M(n, k) requires O(C) space. To obtain the indices of the terms in the optimal subset
some additional book-keeping is needed, which requires O(nC) space.

3.1.4 Longest Common Subsequence

Given: Two sequences (or strings) X(1 : m), Y (1 : n)

Goal: A subsequence of X is the string that remains after deleting some number (zero or
more) of elements of X. We wish to find the longest common subsequence (LCS) of X and
Y, namely, a sequence of maximal length that is a subsequence of both X and Y.

For example:

X = AV BV AMCD,

Y = AZBQACLD.

DP solution: Let c(i, j) denote the length of an LCS of the prefix subsequences X(1 : i),
Y (1 : j). Set c(i, j) = 0 if i = 0 or j = 0. Then, for i, j > 0,

c(i, j) =

{
c(i− 1, j − 1) + 1 : x(i)=y(j)
max{c(i, j − 1), c(i− 1, j)} : x(i) 6= y(j)

We can now compute c(i, j) recursively, using a row-first or column-first order. Computing
c(m,n) requires O(mn) steps.
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3.1.5 Further examples

The references mentioned above provide additional details on these problems, as well as a
number of problems. These include, among others:

• The Edit-Distance problem: find the distance (or similarity) between two strings, by
counting the minimal number of ”basic operations” that are needed to transform one
string to another. A common set of basic operations is: delete character, add char-
acter, change character. This problem is frequently encountered in natural language
processing and bio-informatics (e.g., DNA sequencing) applications, among others.

• The Matrix-Chain Multiplication problem: Find the optimal order to compute a
matrix multiplication M1M2 · · ·Mn (for non-square matrices).

3.2 Shortest Path on a Graph

The problem of finding the shortest path over a graph is one of the most basic ones in graph
theory and computer science. We shall briefly consider here three major algorithms for
this problem that are closely related to dynamic programming, namely: The Bellman-Ford
algorithm, Dijkstra’s algorithm, and A∗.

3.2.1 Problem Statement

We introduce several definitions from graph-theory.

Definition 3.1. Weighted Graphs: Consider a graph G = (V,E) that consists of a
finite set of vertices (or nodes) V = {v} and a finite set of edges (or links) E = {e}. We
will consider directed graphs, where each edge e is equivalent to an ordered pair (v1, v2) ≡
(s(e), d(e)) of vertices. To each edge we assign a real-valued weight (or cost) w(e) =
w(v1, v2).

Definition 3.2. Path: A path p on G from v0 to vk is a sequence (v0, v1, v2, . . . , vk) of
vertices such that (vi, vi+1) ∈ E. A path is simple if all edges in the path are distinct. A
cycle is a path with v0 = vk.

Definition 3.3. Path length: The length of a path w(p) is the sum of the weights over

its edges: w(p) =
k∑
i=1

w(vi−1, vi).

A shortest path from u to v is a path from u to v that has the smallest length w(p)
among such paths. Denote this minimal length as d(u, v) (with d(u, v) = ∞ if no path
exists from u to v). The shortest path problem has the following variants:

• Single pair problem: Find the shortest path from a given source vertex s to a given
destination vertex t .
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• Single source problem: Find the shortest path from a given source vertex s to all
other vertices.

• Single destination: Find the shortest path to a given destination node t from all other
vertices.

• All pair problem.

We note that the single-source and single-destination problems are symmetric and can
be treated as one. The all-pair problem can of course be solved by multiple applications
of the other algorithms, but there exist algorithms which are especially suited for this
problem.

3.2.2 The Dynamic Programming Equation

The DP equation (or Bellman’s equation) for the shortest path problem can be written as:

d(u, v) = min {w(u, u′) + d(u′, v) : (u, u′) ∈ E},

which holds for any pair of nodes u, v.
The interpretation: w(u, u′) + d(u′, v) is the length of the path that takes one step from u
to u′, and then proceeds optimally. The shortest path is obtained by choosing the best first
step. Another version, which singles out the last step, is d(u, v) = min {d(u, v′)+w(v′, v) :
(v′, v) ∈ E}. We note that these equations are non-explicit, in the sense that the same
quantities appear on both sides. These relations are however at the basis of the following
explicit algorithms.

3.2.3 The Bellman-Ford Algorithm

This algorithm solves the single destination (or the equivalent single source) shortest path
problem. It allows both positive and negative edge weights. Assume for the moment that
there are no negative-weight cycles (why?).

Algorithm 3.1. Bellman-Ford Algorithm

Input: A weighted directed graph G, and destination node t.

1. Initialization: d[t] = 0, d[v] =∞ for v ∈ V \{t}.
% d[v] holds the current shortest distance from v to t.

2. for i = 1 to |V | − 1,

d̃[v] = d[v], v ∈ V \{t} % temporary buffer for d

for each vertex v ∈ V \{t},
q[v] = minu{w(v, u) + d̃[u] : (v, u) ∈ E}
d[v] = min{q[v], d[v]}
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3. for v ∈ V \{t},
if d[v] <∞

set π[v] ∈ arg minu{w(v, u) + d̃[u] : (v, u) ∈ E}
else

π[v]=NULL

4. return {d[v], π[v]}

The output of the algorithm is d[v] = d(v, t), the weight of the shortest path from v to
t, and the routing list π. A shortest path from vertex v is obtained from π by following he
sequence: v1 = π[v], v2 = π[v1], . . . ,t = π[vk−1]. To understand the algorithm, we observe
that after round i, d[v] holds the length of the shortest path from v in i steps or less.
(This can easily be verified by the results of the previous lecture.) Since the shortest path
takes as most |V | − 1 steps, the above claim of optimality follows.

Remarks:

1. The running time of the algorithm is O(|V | · |E|). This is because in each round i
of the algorithm, each edge e is involved in exactly one update of d[v] for some v.

2. If {d[v]} does not change at all at some round, then the algorithm may be stopped
there.

3. In the version shown above, d̃[v] is used to ’freeze’ d[v] for an entire round. The
standard form of the algorithm actually uses d[v] directly on the right-hand side.

4. We have assumed above that no negative-weight cycles exist. In fact the algorithm
can be used to check for existence of such cycles: A negative-weight cycle exists if
and only if d[v] changes during an additional step (i = |V |) of the algorithm.

5. The basic scheme above can also be implemented in an asynchronous manner, where
each node performs a local update of d[v] at its own time. Further, the algorithm
can be started from any initial conditions, although convergence can be slower. This
makes the algorithm useful for distributed environments such as internet routing.

3.2.4 Dijkstra’s Algorithm

Dijkstra’s algorithm (introduced in 1959) provides a more efficient algorithm for the single-
destination shortest path problem. This algorithm is restricted to non-negative link weights,
i.e., w(v, u) ≥ 0.

The algorithm essentially determines the minimal distance d(v, t) of the vertices to
the destination in order of that distance, namely the closest vertex first, then the second-
closest, etc. The algorithm is roughly described below, with more details in the recitation.
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The algorithm maintains a set S of vertices whose minimal distance to the destination has
been determined. The other vertices are held in a queue Q. It proceeds as follows.

Algorithm 3.2. Dijkstra’s Algorithm

1. Input: A weighted directed graph, and destination node t.

2. Initialization:

d[t] = 0

d[v] =∞ for v ∈ V \{t}
π[v] = φ for v ∈ V
S = φ

3. while S 6= V ,

choose u ∈ V \S with minimal value d[u], add it to S

for each vertex v with (v, u) ∈ E,

if d[v] > w(v, u) + d[u],

set d[v] = w(v, u) + d[u], π[v] = u

4. return {d[v], π[v]}

Remarks:

1. The Bellman-Form algorithm visits and updates each vertex of the graph up to |V |
times, leading to a running time of O(|V | · |E|). Dijkstra’s algorithm visits each edge
only once, which contributes O( |E|) to the running time. The rest of the computation
effort is spent on determining the order of node insertion to S.

2. The vertices in V \S need to be extracted in increasing order of d[v]. This is handled
by a min-priority queue Q, and the complexity of the algorithm depends on the
implementation of this queue.

3. With a naive implementation of the queue that simply keeps the vertices in some fixed
order, each extract-min operation takes O(|V |) time, leading to overall running time
of O(|V |2 + |E|) for the algorithm. Using a basic (mean-heap) priority queue brings
the running time to O((|V | + |E|) log |V |), and a more sophisticated one (Fibonacci
heap) can bring it down to O(|V | log |V |+ |E|).
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3.2.5 Dijkstra’s Algorithm for Single Pair Problems

For the single pair problem, Dijkstra’s algorithm can be written in the Single Source
Problem formulation, and terminated once the destination node is reached, i.e., when t is
popped from the queue Q. From the discussion above, it is clear that the algorithm will
terminate exactly when the shortest path between the source and destination is found.

Algorithm 3.3. Dijkstra’s Algorithm (Single Pair Problem)

1. Input: A weighted directed graph, source node s, and destination node t.

2. Initialization:

d[s] = 0

d[v] =∞ for v ∈ V \{s}
π[v] = ∅ for v ∈ V
S = ∅

3. while S 6= V ,

choose u ∈ V \S with minimal value d[u], add it to S

if u == t, break

for each vertex v with (u, v) ∈ E,

if d[v] > d[u] + w(u, v),

set d[v] = d[u] + w(u, v), π[v] = u

4. return {d[v], π[v]}

3.2.6 From Dijkstra’s Algorithm to A∗

Dijkstra’s algorithm expands vertices in the order of their distance from the source. When
the destination is known (as in the single pair problem), it seems reasonable to bias the
search order towards vertices that are closer to the goal.

The A∗ algorithm implements this idea through the use of a heuristic function h[v],
which is an estimate of the distance from vertex v to the goal. It then expands vertices in
the order of d[v] + h[v], i.e., the (estimated) length of the shortest path from s to t that
passes through v.

Algorithm 3.4. A∗ Algorithm

1. Input: A weighted directed graph, source s, destination t, and heuristic function h.

2. Initialization:
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d[s] = 0

d[v] =∞ for v ∈ V \{s}
π[v] = ∅ for v ∈ V
S = ∅

3. while S 6= V ,

choose u ∈ V \S with minimal value d[u] + h[u], add it to S

if u == t, break

for each vertex v with (u, v) ∈ E,

if d[v] > d[u] + w(u, v),

set d[v] = d[u] + w(u, v), π[v] = u

4. return {d[v], π[v]}

Obviously, we cannot expect the estimate h(v) to be exact – if we knew the exact
distance then our problem would be solved. However, it turns out that relaxed properties
of h are required to guarantee the optimality of A∗.

Definition 3.4. A heuristic is said to be consistent if for every adjacent vertices u, v we
have that

w(v, u) + h[u]− h[v] ≥ 0.

A heuristic is said to be admissible if it is a lower bound of the shortest path to the goal,
i.e., for every vertex u we have that

h[u] ≤ d∗[u, t],

where d∗[u, v] denotes the length of the shortest path between u and v.

Remarks:

• It is easy to show that every consistent heuristic is also admissible (exercise: show
it!). It is more difficult to find admissible heuristics that are not consistent. In path
finding applications, a popular heuristic that is both admissible and consistent is the
Euclidean distance to the goal.

• With a consistent heuristic, A∗ is guaranteed to find the shortest path in the graph.
With an admissible heuristic, some extra bookkeeping is required to guarantee opti-
mality.

• Actually, a stronger result can be shown for A∗: for a given h, no other algorithm
that is guaranteed to be optimal will explore less vertices during the search.
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• The notion of admissibility is a type of optimism, and is required to guarantee that
we don’t settle on a suboptimal solution. Later in the course we will see that this
idea plays a key role also in learning algorithms.

• We will show optimality for a consistent heuristic by showing that A∗ is equivalent
to running Dijkstra’s algorithm on a graph with modified weights.

1. Define new weights ŵ(u, v) = w(u, v) + h(v) − h(u). This transformation does
not change the shortest path from s to t (show this!), and the new weights are
non-negative due to the consistency property.

2. The A∗ algorithm is equivalent to running Dijkstra’s algorithm (for the single
pair problem) with the weights ŵ, and defining d̂[v] = d[v]+h[v]. The optimality
of A∗ therefore follows from the optimality results for Dijsktra’s algorithm.

• The idea of changing the cost function to make the problem easier to solve without
changing the optimal solution is known as cost shaping, and also plays a role in
learning algorithms.

3.3 Continuous Optimal Control

In this section we consider optimal control of continuous, deterministic, and fully observed
systems in discrete time. In particular, consider the following problem:

min
u0,...,uT

T∑
t=0

ct(xt, ut),

s.t. xt+1 = ft(xt, ut),

(3.1)

where the initial state x0 is given. Here ct is a (non-linear) cost function at time t, and
ft describes the (non-linear) dynamics at time t. We assume here that ft and ct are
differentiable.

A simple approach for solving Problem 3.1 is using gradient based optimization. Note
that we can expand the terms in the sum using the known dynamics function and initial
state:

J(u0, . . . , uT ) =

T∑
t=0

ct(xt, ut)

= c0(x0, u0) + c1(f0(x0, u0), u1) + · · ·+ cT (fT−1(fT−2(. . . ), uT−1), uT ).

Using our differentiability assumption, we know ∂ft
∂xt

, ∂ft∂ut
, ∂ct∂xt

, ∂ct∂ut
. Thus, using repeated

application of the chain rule, we can calculate ∂J
∂ut

, and optimize J using gradient descent.
There are, however, two potential issues with this approach. The first is that we will only
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be guaranteed a locally optimal solution. The second is that in practice, for large T , the
repeated calculation in the gradient often suffers from numerical instability.

We will now show a different approach. We will first show that for linear systems and
quadratic costs, Problem 3.1 can be solved using dynamic programming. This problem
is often called a Linear Quadratic Regulator (LQR). We will then show how to extend
the LQR solution to non-linear problems using linearization, resulting in an iterative LQR
algorithm (iLQR).

3.3.1 Linear Quadratic Regulator

We now restrict our attention to linear-quadratic problems of the form:

min
u0,...,uT

T∑
t=0

ct(xt, ut),

s.t. xt+1 = Atxt +Btut,

ct = x>t Qtxt + u>t Rtut,∀t = 0, . . . , T − 1,

cT = x>t QTxt.

(3.2)

where x0 is given, and Qt = Q>t ≥ 0, Rt = R>t > 0 are state-cost and control-cost matrices.
We will solve Problem 3.2 using dynamic programming. Let Vt(x) denote the value

function of a state at time t, that is, Vt(x) = minut,...,uT
∑T

t′=t ct′(xt′ , ut′) s.t. xt = x.

Proposition 3.1. The value function has a quadratic form: Vt(x) = x>Ptx, and Pt = P>t .

Proof. We prove by induction. For t = T , this holds by definition, as VT (x) = x>QTx.
Now, assume that Vt+1(x) = x>Pt+1x. We have that

Vt(x) = min
ut

x>Qtx+ u>t Rtut + Vt+1(Atx+Btut)

= min
ut

x>Qtx+ u>t Rtut + (Atx+Btut)
>Pt+1(Atx+Btut)

= x>Qtx+ (Atx)>Pt+1(Atx) + min
ut

u>t (Rt +B>t Pt+1Bt)ut + 2(Atx)>Pt+1(Btut)

The objective is quadratic in ut, and solving the minimization gives

u∗t = −(Rt +B>t Pt+1Bt)
−1B>t Pt+1Atx.

Substituting back u∗t in the expression for Vt(x) gives a quadratic expression in x.

From the construction in the proof of Proposition 3.1 one can recover the sequence
of optimal controllers u∗t . By substituting the optimal controls in the forward dynamics
equation, one can also recover the optimal state trajectory.
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Remarks:

1. The DP solution is globally optimal for the LQR problem. Interestingly, the com-
putational complexity is polynomial in the dimension of the state, and linear in the
time horizon. This is in contrast to the curse of dimensionality, and is due to the
special structure of the dynamics and cost.

2. Note that the DP computation resulted in a sequence of linear feedback controllers.
It turns out that these controllers are also optimal in the presence of Gaussian noise
added to the dynamics.

3. A similar derivation holds for the system:

min
u0,...,uT

T∑
t=0

ct(xt, ut),

s.t. xt+1 = Atxt +Btut + Ct,

ct = [xt, ut]
>Wt[xt, ut] + Zt[xt, ut] + Yt, ∀t = 0, . . . , T.

In this case, the optimal control is of the form u∗t = Ktx+ kt, for some Kt and kt.

3.3.2 Iterative LQR

We now return to the original non-linear problem 3.1. If we linearize the dynamics and
quadratize the cost – we can plug in the LQR solution we obtained above. Namely, given
some reference trajectory x̂0, û0, . . . , x̂T , ûT , we apply a Taylor approximation:

ft(xt, ut) ≈ ft(x̂t, ût) +∇xt,utft(x̂t, ût)[xt − x̂t, ut − ût]
ct(xt, ut) ≈ ct(x̂t, ût) +∇xt,utct(x̂t, ût)[xt − x̂t, ut − ût]

+
1

2
[xt − x̂t, ut − ût]>∇2

xt,utct(x̂t, ût)[xt − x̂t, ut − ût].
(3.3)

If we define δx = x − x̂, δu = u − û, then the Taylor approximation gives an LQR
problem for δx, δu. It’s optimal controller is u∗t = Kt(xt − x̂t) + kt + ût. By running this
controller on the non-linear system, we obtain a new reference trajectory. Also note that
the controller u∗t = Kt(xt − x̂t) + αkt + ût for α ∈ [0, 1] smoothly transitions from the
previous trajectory (α = 0) to the new trajectory (α = 1) (show that!). Therefore we
can interpret α as a step size, to guarantee that we stay within the Taylor approximation
limits.

The iterative LQR algorithm works by applying this approximation iteratively:

1. Initialize a control sequence û0, . . . , ûT (e.g., by zeros).

2. Run a forward simulation of the controls in the nonlinear system to obtain a state
trajectory x̂0, . . . , x̂T .
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3. Linearize the dynamics and quadratize the cost (Eq. 3.3), and solve using LQR.

4. By running a forward simulation of the control u∗t = Kt(xt − x̂t) + αkt + ût on the
non-linear system, perform a line search for the optimal α according to the non-linear
cost.

5. For the found α, run a forward simulation to obtain a new trajectory x̂0, û0, . . . , x̂T , ûT .
Go to step 3.

In practice, the iLQR algorithm is typically much more stable and efficient than the
naive gradient descent approach.

3.4 Exercises

Exercise 3.1 (Counting). Given an integer number X, we would like to count in how
many ways it can be represented as a sum of N natural numbers (with relevance to order)
marked by ΨN (X). For example, Ψ2 (3) = 2 since: 3 = 1 + 2 = 2 + 1.

1. Find the following: Ψ1 (2) ,Ψ2 (4) ,Ψ3 (2) ,ΨN (N) and Ψ1 (X).

2. Find a recursive equation for ΨN (X).

3. Write a code in Matlab for finding ΨN (X) using dynamic programming.

(a) What is the time and memory complexity of your algorithm?

(b) Find Ψ12 (800).

4. Now assume each natural number i is associated with some cost ci. For a given X,N
we are interested in finding the lowest cost combination of natural numbers {xi}Ni=1

satisfying
∑N

i=1 xi = X.

(a) Formulate the problem as a finite horizon decision problem: Define the state
space, the action space and the cumulative cost function.

(b) Bound the complexity of finding the best combination.

Exercise 3.2 (Language model). In the city of Bokoboko the locals use a language
with only 3 letters (’B’,’K’,’O’). After careful inspection of this language, researchers have
reached two conclusions:

I. Every word starts with the letter ’B’.
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II. Every consecutive letter is distributed only according to the previous letter as follows:

P (lt+1|lt) =

B
K
O
−


0.1 0.325 0.25 0.325
0.4 0 0.4 0.2
0.2 0.2 0.2 0.4
1 0 0 0


Where ’-’ represents the end of a word. For example, the probability of the word
’bko’ is given by 0.325 · 0.4 · 0.4 = 0.052.

1. Find the probability of the following words: ’Bob’, ’Koko’, ’B’, ’Bokk’,’Boooo’.

2. We wish to find the most probable word in the language of length K.

(a) Formulate the problem as a finite horizon decision problem: Define the state
space, the action space and the multiplicative cost function.

(b) Bound the complexity of finding the best combination.

(c) Find a reduction from the given problem to an analogous problem with additive
cost function instead.

(d) Explain when each approach (multiplicative vs. additive) is preferable.
Hint: Think of the consequence of applying the reduction on the memory rep-
resentation of a number in a standard operating system.

(e) Write a code in Matlab which finds the most probable word of a given size using
dynamic programming. What is the most probable word of size 5?

Exercise 3.3 (Path Planning). Moses the mouse starts his journey at the south west room
in a M ×N rectangular apartment with M ·N rooms of size 1× 1, some of which contain
cheese. After his rare head injury in the mid-scroll war, Moses can only travel north or
east. An illustration of Moses’s life for M = 5, N = 8 is given in the following figure.

Being a mouse and all, Moses wants to gather as much cheese as possible until he
reaches the north-east room of the apartment.
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1. Formulate the problem as a finite horizon decision problem: Define the state space,
the action space and the cumulative cost function.

2. What is the horizon of the problem?

3. How many possible trajectories are there? How does the number of trajectories
behaves as a function of N when M = 2? How does it behave as a function of N
when M = N?

4. Aharon, Moses’s long lost war-buddy woke up confused next to Moses and decided
to join him in his quest (needless to say, both mice suffer the same rare head injury).

(a) Explain what will happen if both mice ignore each other’s existence and act
’optimal’ with respect to the original problem.

(b) Assume both mice decided to coordinate their efforts and split the loot. How
many states and actions are there now?

(c) Now their entire rarely-head-injured division has joined the journey. Assume
there’s a total of K mice, how many states and actions are there now?

Exercise 3.4 (MinMax dynamic programming). In this problem we consider an ad-
versarial version of finite horizon dynamic programming, which is suitable for solving 2-
player games.

In this setting, at time k ∈ {0, 1, 2, . . . , N − 1} the system is at state sk ∈ Sk, the agent
chooses an action ak ∈ Ak (sk) according to the agent policy πak(sk), and subsequently
the opponent chooses an action bk from the set of allowable opponent actions Bk (sk, ak),
according to the opponent policy πbk(sk, ak).

The system then transitions to a new state according to:

sk+1 = fk(sk, ak, bk), k = 0, 1, 2, . . . , N − 1.

The instantaneous reward is denoted by r (sk, ak, bk), and, for an N-stage path hN =
(s0, a0, b0 . . . , sN−1, aN−1, bN−1, sN ) the cumulative reward is

RN (hN ) =
N−1∑
k=0

rk(sk, ak, bk) + rN (sN ).

Given s0, the agent’s goal is to find a policy π∗a that maximizes the worst-case cumulative
reward:

π∗a ∈ arg max
πa

{
min
πb
{RN (hN )}

}
.

1. Formulate a dynamic programming algorithm for this problem. Explain what the
value function represents in this case.
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Eilat Ashdod Beer Sheva Haifa Jerusalem Nazereth Netanya Petah Tikva Rehovot Tel Aviv
Eilat 0 328 246 - 323 - 381 - 327 -
Ashdod 328 0 82 - - - - 47 24 42
Beer Sheva 246 82 0 - 89 - - 106 82 103
Haifa - - - 0 145 40 64 91 95
Jerusalem 323 - 89 145 0 142 - 60 59 62
Nazereth - - - 40 142 0 75 - - -
Netanya 381 - - 64 - 75 0 30 54 33
Petah Tikva - 47 106 91 60 - 30 0 29 10
Rehovot 327 24 82 - 59 - 54 29 0 21
Tel Aviv - 42 103 95 62 - 33 10 21 0

Table 3.1: City-distances

2. What is the computational complexity of your algorithm?

3. Could this approach be used to solve the game of tic-tac-toe? Explain what are the
states, actions and rewards for this game.

4. Could this approach be used to solve the game of chess? Explain.

Exercise 3.5 (SSSP). This exercise concerns the SSSP problem.

1. Give an example of a graph that does not contain negative cycles, but for which
Dijkstra’s algorithm fails. Prove that your graph indeed does not contain any negative
cycles.

2. Consider the following road distances table (Excel file available on the course web-
page). Each number in the table represents a road between the two cities of the
mentioned distance.

(a) How many nodes and edges are there in the induced graph?

(b) What is the shortest path between Tel Aviv and Haifa? What about Jerusalem
and Nazereth?

(c) Program Dijkstra’s algorithm and find the shortest path from each city to each
other city. What is the time complexity of your solution in terms of the number
of nodes and edges in the graph?

(d) Find the shortest route that starts at Jerusalem, visits all other cities and then
returns to Jerusalem. What is the time complexity of your solution in terms of
the number of nodes and edges in the graph?
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Chapter 4

Markov Decision Processes

In the previous lectures we considered multi-stage decision problems for deterministic sys-
tems. In many problems of interest, the system dynamics also involves randomness, which
leads us to stochastic decision problems. In this lecture we introduce the basic model of
Markov Decision Processes, which will be considered is the rest of the course.

4.1 Markov Chains: A Reminder

A Markov chain {Xt, t = 0, 1, 2, . . .}, with Xt ∈ X, is a discrete-time stochastic process,
over a finite or countable state-space X, that satisfies the following Markov property:

P(Xt+1 = j|Xt = i,Xt−1, . . . X0) = P(Xt+1 = j|Xt = i).

We focus on time-homogeneous Markov chains, where

P(Xt+1 = j|Xt = i) = P(X1 = j|X0 = i)
∆
= pij .

The pij ’s are the transition probabilities, which satisfy pij ≥ 0,
∑

i∈X pij = 1 ∀j. The
matrix P = (pij) is the transition matrix.

Given the initial distribution p0 of X0, namely p(X0 = i) = p0(i), we obtain the finite-
dimensional distributions:

P(X0 = i0, . . . , Xt = it) = p0(i)pi0i1 · . . . · pit−1it .

Define p
(m)
ij = P(Xm = j|X0 = i), the m-step transition probabilities. It is easy to

verify that p
(m)
ij = [Pm]ij (here Pm is the m-th power of the matrix P ).

State classification:

• State j is accessible from i (i→ j) if p
(m)
ij > 0 for some m ≥ 1.
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• i and j are communicating states (or communicate) if i→ j and j → i.

• A communicating class (or just class) is a maximal collection of states that commu-
nicate.

• The Markov chain is irreducible if all states belong to a single class (i.e., all states
communicate with each other).

• State i is periodic with period d ≥ 2 if p
(m)
ii = 0 for m 6= `d and p

(m)
ii > 0 for m = `d,

` = 1, 2, . . .. Periodicity is a class property: all states in the same class have the same
period.

Recurrence:

• State i is recurrent if P(Xt = i for some t ≥ 1|X0 = i) = 1. Otherwise, i is transient.

• State i is recurrent if and only if
∑∞

m=1 p
(m)
ii =∞.

• Recurrence is a class property.

• If i and j are in the same recurrent class, then j is (eventually) reached from i with
probability 1: P(Xt = j for some t ≥ 1|X0 = i) = 1.

• Let Ti be the return time to state i (number of stages required for (Xt) to return to
i). If i is a recurrent state, then Ti <∞ w.p. 1.

• State i is positive recurrent if E(Ti) < ∞, and null recurrent if E(Ti) = ∞. If the
state space is finite, all recurrent states are positive recurrent.

Invariant Distribution: The probability vector π = (πi) is an invariant distribution or
stationary distribution for the Markov chain if πP = π, namely

πj =
∑

i
πipij ∀j.

Clearly, if Xt ∼ π then Xt+1 ∼ π. If X0 ∼ π, then the Markov chain (Xt) is a stationary
stochastic process.

Theorem 4.1 (Recurrence of finite Markov chains). Let (Xt) be an irreducible, a-
periodic Markov chain over a finite state space X. Then the following properties hold:

1. All states are positive recurrent

2. There exists a unique stationary distribution π∗

3. Convergence to the stationary distribution: limt→∞p
(t)
ij = πj (∀j)
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4. Ergodicity: For any finite f : limt→∞
1
t

∑t−1
s=0 f(Xs) =

∑
i π(i)f(i)

∆
=π · f.

For countable Markov chains, there are other possibilities.

Theorem 4.2 (Countable Markov chains). Let (Xt) be an irreducible and a-periodic
Markov chain over a countable state space X. Then:

1. Either (i) all states are positive recurrent, or (ii) all states are null recurrent, or (iii)
all states are transient.

2. If (i) holds, then properties (2)-(4) of the previous Theorem hold as well.

3. Conversely, if there exists a stationary distribution π then properties (1)-(4) are
satisfied.

Reversible Markov chains: Suppose there exists a probability vector π = (πi) so that

πipij = πjpji, i, j ∈ X. (4.1)

It is then easy to verify by direct summation that π is an invariant distribution for the
Markov chain defined by (pij). The equations (4.1) are called the detailed balance equations.
A Markov chain that satisfies these equations is called reversible.

Example 4.1 (Discrete-time queue). Consider a discrete-time queue, with queue length
Xt ∈ N0 = {0, 1, 2, . . . }. At time instant t, At new jobs arrive, and then up to St jobs can
be served, so that

Xt+1 = (Xt +At − St)+.

Suppose that (St) is a sequence of i.i.d. RVs, and similarly (At) is a sequence of i.i.d. RVs,
with (St), (At) and X0 mutually independent. It may then be seen that (Xt, t ≥ 0) is a
Markov chain. Suppose further that each St is a Bernoulli RV with parameter q, namely
P (St = 1) = q, P (St = 0) = 1 − q. Similarly, let At be a Bernoulli RV with parameter p.
Then

pij =


p(1− q) : j = i+ 1
(1− p)(1− q) + pq : j = i, i > 0
(1− p)q : j = i− 1, i > 0
(1− p) + pq : j = i = 0
0 : otherwise

Denote λ = p(1 − q), µ = (1 − p)q, and ρ = λ/µ. The detailed balance equations for this
case are:

πiλ = πi+1µ, i ≥ 0

These equations have a solution with
∑

iπi = 1 if and only if ρ < 1. The solution is
πi = π0ρ

i, with π0 = 1− ρ. This is therefore the stationary distribution of this queue.
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4.2 Controlled Markov Chains

A Markov Decision Process consists of two main parts:

1. A controlled dynamic system, with stochastic evolution.

2. A performance objective to be optimized.

In this section we describe the first part, which is modeled as a controlled Markov chain.
Consider a controlled dynamic system, defined over:

• A discrete time axis T = {0, 1, . . . , T−1} (finite horizon), or T = {0, 1, 2, . . .} (infinite
horizon). To simplify the discussion we refer below to the infinite horizon case, which
can always be ”truncated” at T if needed.

• A finite state space S, where St ⊂ S is the set of possible states at time t .

• A finite action set A, where At(s) ⊂ A is the set of possible actions at time t and
state s ∈ St.

State transition probabilities:

• Suppose that at time t we are in state st = s, and choose an action at = a. The next
state st+1 = s′ is then determined randomly according to a probability distribution
pt(·|s, a) on St+1. That is,

P(st+1 = s′|st = s, at = a) = pt(s
′|s, a), s′ ∈ St+1

• The probability pt(s
′|s, a) is the transition probability from state s to state s′ for a

given action a. We naturally require that pt(s
′|s, a) ≥ 0, and

∑
s′∈St+1

pt(s
′|s, a) = 1

for all s ∈ St, a ∈ At(s).

• Implicit in this definition is the controlled-Markov property:

P(st+1 = s′|st, at) = P(st+1 = s′|st, at, . . . , s0,a0)

• The set of probability distributions

P = {pt(·|s, a) : s ∈ St, a ∈ At(s), t ∈ T}

is called the transition law or transition kernel of the controlled Markov process.

Stationary Models: The controlled Markov chain is called stationary or time-invariant
if the transition probabilities do not depend on the time t. That is:

∀t, pt(s
′|s, a) ≡ p(s′|s, a), St ≡ S, At(s) ≡ A(s).
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Figure 4.1: Markov chain

Figure 4.2: Controlled Markov chain

Graphical Notation: The state transition probabilities of a Markov chain are often
illustrated via a state transition diagram, such as in Figure 4.1.

A graphical description of a controlled Markov chain is a bit more complicated because
of the additional action variable. We obtain the diagram (drawn for state s = 1 only, and
for a given time t) in Figure 4.2, reflecting the following transition probabilities:

p(s′ = 2|s = 1, a = 1) = 1

p(s′|s = 1, a = 2) =


0.3 : s′ = 1
0.2 : s′ = 2
0.5 : s′ = 3

State-equation notation: The stochastic state dynamics can be equivalently defined
in terms of a state equation of the form

st+1 = ft(st, at, wt),

where wt is a random variable. If (wt)t≥0 is a sequence of independent RVs, and further each
wt is independent of the ”past” (st−1, at−1, . . . s0), then (st, at)t≥0 is a controlled Markov
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process. For example, the state transition law of the last example can be written in this
way, using wt ∈ {4, 5, 6}, with pw(4) = 0.3, pw(5) = 0.2, pw(6) = 0.5 and, for st = 1:

ft(1, 1, wt) = 2
ft(1, 2, wt) = wt − 3

.

The state equation notation is especially useful for problems with continuous state space,
but also for some models with discrete states.

Control Policies

• A general or history-dependent control policy π = (πt)t∈T is a mapping from each
possible history ht = (s0, a0, . . . , st−1, at−1, st), t ∈ T, to an action at = πt(ht) ∈ At.
We denote the set of general policies by ΠG.

• A Markov control policy π is allowed to depend on the current state and time only:
at = πt(st). We denote the set of Markov policies by ΠM .

• For stationary models, we may define stationary control policies that depend on the
current state alone. A stationary policy is defined by a single mapping π : S → A,
so that at = π(st) for all t ∈ T. We denote the set of stationary policies by ΠS .

• Evidently, ΠG ⊃ ΠM ⊃ ΠS .

Randomized Control policies

• The control policies defined above specify deterministically the action to be taken at
each stage. In some cases we want to allow for a random choice of action.

• A general randomized control policy assigns to each possible history ht a probability
distribution πt(·|ht) over the action set At. That is, prob{at = a|ht} = πt(a|ht). We
denote the set of general randomized policies by ΠGR.

• Similarly, we can define the set ΠMR of Markov randomized control policies, where
πt(·|ht) is replaced by πt(·|st), and the set ΠSR of stationary randomized control
policies, where πt(·|st) is replaced by π(·|st).

• Note that the set ΠGR includes all other policy sets as special cases.

The Induced Stochastic Process Let p0 = {p0(s), s ∈ S0} be a probability distribu-
tion for the initial state s0. A control policy π ∈ ΠGR, together with the transition law
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P = {pt(s′|s, a)} and the initial state distribution p0 = (p0(s), s ∈ S0), induce a prob-
ability distribution over any finite state-action sequence hT = (s0, a0, . . . , sT−1, aT−1, sT ),
given by

P (hT ) = p0(s0)
T−1∏
t=0

p(st+1|st, at)πt(at|ht).

To see this, observe the recursive relation:

P (ht+1) = P (ht, at, st+1) = P (st+1|ht, at)P (at|ht)P (ht)
= pt(st+1|st, at)πt(at|ht)P (ht).

In the last step we used the conditional Markov property of the controlled chain: P (st+1|ht, at) =
pt(st+1|st, at), and the definition of the control policy π. The required formula follows by
recursion.

Therefore, the state-action sequence h∞ = (sk, ak)k≥0 can now be considered a stochas-
tic process. We denote the probability law of this stochastic process by P π,p0(·). The
corresponding expectation operator is denoted by Eπ,p0(·). When the initial state s0 is
deterministic (i.e., p0(s) is concentrated on a single state s), we may simply write P π,s(·)
or P π(·|s0 = s).

Under a Markov control policy, the state sequence (st)t≥0 becomes a Markov chain,
with transition probabilities

P (st+1 = s′|st = s) =
∑

a∈At
pt(s

′|s, a)πt(a|s).

Exercise 4.1. Prove this!

If the controlled Markov chain is stationary (time-invariant) and the control policy is
stationary, then the induced Markov chain is stationary as well.

Remark 4.1. For most non-learning optimization problems, Markov policies suffice to
achieve the optimum.

Remark 4.2. Implicit in these definitions of control policies is the assumption that the
current state st can be fully observed before the action at is chosen . If this is not the case
we need to consider the problem of a Partially Observed MDP (POMDP), which is more
involved.

4.3 Performance Criteria

4.3.1 Finite Horizon Problems

Consider the finite-horizon problem, with a fixed time horizon T . As in the deterministic
case, we are given a running reward function rt = {rt(s, a) : s ∈ St, a ∈ At} for 0 ≤ t ≤
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T − 1, and a terminal reward function rT = {rT (s) : s ∈ ST }. The obtained rewards are
then Rt = rt(st, at) at times t ≤ T − 1, and RT = rT (sT ) at the last stage. Our general
goal is to maximize the cumulative return:

T∑
t=0

Rt =
T−1∑
t=0

rt(st, at) + rT (sT ).

However, since the system is stochastic, the cumulative return will generally be random,
and we need to specify in which sense to maximize it. A natural first option is to consider
the expected value of the return. That is, define:

JπT (s) = Eπ(

T∑
t=0

Rt|s0 = s) ≡ Eπ,s(
T∑
t=0

Rt)

Here π is the control policy as defined above, and s denotes the initial state. Hence, JπT (s)
is the expected cumulative return under the control policy π. Our goal is to find an optimal
control policy that maximized JπT (s).

Remarks:

1. Dependence on the next state: In some problems, the obtained reward may depend
on the next state as well: Rt = r̃t(st, at, st+1). For control purposes, when we only
consider the expected value of the reward, we can reduce this reward function to the
usual one by defining

rt(s, a)
∆
= E(Rt|st = s, at = a) ≡

∑
s′∈S

p(s′|s, a)r̃t(s, a, s
′)

2. Random rewards: The reward Rt may also be random, namely a random variable
whose distribution depends on (st, at). This can also be reduced to our standard
model for planning purposes by looking at the expected value of Rt, namely

rt(s, a) = E(Rt|st = s, at = a).

3. Risk-sensitive criteria: The expected cumulative return is by far the most common
goal for planning. However it is not the only one possible. For example, one may
consider the following risk-sensitive return function:

Jπ
T,λ

(s) =
1

λ
logEπ,s(exp(λ

T∑
t=0

Rt)).

For λ > 0, the exponent gives higher weight to high rewards, and the opposite for
λ < 0.
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4.3.2 Infinite Horizon Problems

We next consider planning problems that extend to an unlimited time horizon, t = 0, 1, 2, . . ..
Such planning problems arise when the system in question is expected to operate for a long
time, or a large number of steps, possibly with no specific ”closing” time. Infinite horizon
problems are most often defined for stationary problems. In that case, they enjoy the
important advantage that optimal policies can be found among the class of stationary poli-
cies. We will restrict attention here to stationary models. As before, we have the running
reward function r(s, a), which extends to all t ≥ 0. The reward obtained at stage t is
Rt = r(st, at).

Discounted return: The most common performance criterion for infinite horizon prob-
lems is the expected discounted return:

Jπα(s) = Eπ(

∞∑
t=0

αtr(st, at)|s0 = s) ≡ Eπ,s(
∞∑
t=0

αtr(st, at))

Here 0 < α < 1 is the discount factor. Mathematically, the discount factor ensures con-
vergence of the sum (whenever the reward sequence is bounded). This make the problem
”well behaved”, and relatively easy to analyze.

Average return: Here we are interested to maximize the long-term average return. The
most common definition of the long-term average return is

Jπav(s) = lim inf
T→∞

Eπ,s(
1

T

T−1∑
t=0

r(st, at))

The theory of average-return planning problems is more involved, and relies to a larger
extent on the theory of Markov chains.

4.3.3 Stochastic Shortest-Path Problems

In an important class of planning problems, the time horizon is not set beforehand, but
rather the problem continues until a certain event occurs. This event can be defined as
reaching some goal state. Let SG ⊂ S define the set of goal states. Define

τ = inf{t ≥ 0 : st ∈ SG}

as the first time in which a goal state is reached. The total expected return for this problem
is defined as:

Jπssp(s) = Eπ,s(
τ−1∑
t=0

r(st, at) + rG(sτ ))
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Here rG(s), s ∈ SG specified the reward at goal states.
This class of problems provides a natural extension of the standard shortest-path prob-

lem to stochastic settings. Some conditions on the system dynamics and reward function
must be imposed for the problem to be well posed (e.g., that a goal state may be reached
with probability one). Such problems are known as stochastic shortest path problems, or
also episodic planning problems.

4.4 *Sufficiency of Markov Policies

In all the performance criteria defined above, the criterion is composed of sums of terms
of the form E(rt(st, at)). It follows that if two control policies induce the same marginal
probability distributions pt(st, at) over the state-action pairs (st, at) for all t ≥ 0, they will
have the same performance.

Using this observation, the next claim implies that it is enough to consider the set of
(randomized) Markov policies in the above planning problems.

Proposition 4.1. Let π ∈ ΠGR be a general (history-dependent, randomized) control pol-
icy. Let

pπ,s0t (s, a) = P π,s0(st = s, at = a), (s, a) ∈ St ×At
Denote the marginal distributions induced by (st, at) on the state-action pairs (st, at), for
all t ≥ 0. Then there exists a randomized Markov policy π̃ that induces the same marginal
probabilities (for all initial states s0).

Exercise 4.2 (Challenge Problem 1). Prove Proposition 4.1.
Note: If you consult a reference or a friend, mention that in your solution.

4.5 Finite-Horizon Dynamic Programming

Recall that we consider the expected total reward criterion, which we denote as

Jπ(s0) = Eπ,s0
(∑T−1

t=0
rt(st, at) + rT (sT )

)
Here π is the control policy used, and s0 is a given initial state. We wish to maximize
Jπ(s0) over all control policies, and find an optimal policy π∗ that achieves the maximal
reward J∗(s0) for all initial states s0. Thus,

J∗(s0)
∆
= Jπ∗(s0) = max

π∈ΠGR
Jπ(s0)
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4.5.1 The Principle of Optimality

The celebrated principle of optimality (stated by Bellman) applies to a large class of multi-
stage optimization problems, and is at the heart of DP. As a general principle, it states
that:

The tail of an optimal policy is optimal for the ”tail” problem.

This principle is not an actual claim, but rather a guiding principle that can be applied
in different ways to each problem. For example, considering our finite-horizon problem, let
π∗ = (π0, . . . , πT−1) denote an optimal Markov policy. Take any state st = s′ which has
a positive probability to be reached under π∗, namely P π,s0(st = s′) > 0. Then the tail

policy (πt, . . . , πT−1) is optimal for the ”tail” criterion Jπt:T (s′) = Eπ
(∑T

k=tRk|st = s′
)

.

4.5.2 Dynamic Programming for Policy Evaluation

As a ”warmup”, let us evaluate the reward of a given policy. Let π = (π0, . . . , πT−1) be a
given Markov policy. Define the following reward-to-go function, or value function:

V π
k (s) = Eπ

(∑T

t=k
Rt|sk = s

)
Observe that V π

0 (s0) = Jπ(s0).

Lemma 4.1 (Value Iteration). V π
k (s) may be computed by the backward recursion:

V π
k (s) =

{
rk(s, a) +

∑
s′∈Sk+1

pk(s
′|s, a) V π

k+1(s′)

}
a=πk(s)

, s ∈ Sk

for k = T − 1, . . . , 0, starting with V π
T (s) = rT (s).

Proof. Observe that:

V π
k (s) = Eπ

(
Rk +

∑N

t=k+1
Rt| sk = s, ak = πk(s)

)
= Eπ

(
Eπ
(
Rk +

∑N

t=k+1
Rt| sk = s, ak = πk(s), sk+1

)
|sk = s, ak = πk(s)

)
= Eπ

(
r(sk, ak) + V π

k+1(sk+1)|sk = s, ak = πk(s)
)

= rk(s, πk(s)) +
∑

s′∈Sk+1

pk(s
′|s, πk(s)) V π

k+1(s′)
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Remarks:

• Note that
∑

s′∈Sk+1
pk(s

′|s, a) V π
k+1(s′) = Eπ(V π

k+1(sk+1)|sk = s, ak = a).

• For the more general reward function r̃t(s, a, s
′), the recursion takes the form

V π
k (s) =

{∑
s′∈Sk+1

pk(s
′|s, a)[rk(s, a, s

′) + V π
k+1(s′)]

}
a=πk(s)

A similar observation applies to all Dynamic Programming equations below.

4.5.3 Dynamic Programming for Policy Optimization

We next define the optimal value function at each time k ≥ 0 :

Vk(s) = max
πk

Eπ
k

(∑T

t=k
Rt|sk = s

)
, s ∈ Sk

The maximum is taken over ”tail” policies πk = (πk, . . . , πT−1) that start from time k.
Note that πk is allowed to be a general policy, i.e., history-dependent and randomized.
Obviously, V0(s0) = J∗(s0).

Theorem 4.3 (Finite-horizon Dynamic Programming). The following holds:

1. Backward recursion: Set VT (s) = rT (s) for s ∈ ST .
For k = T − 1, . . . , 0, Vk(s) may be computed using the following recursion:

Vk(s) = max
a∈Ak

{
rk(s, a) +

∑
s′∈Sk+1

pk(s
′|s, a)Vk+1(s′)

}
, s ∈ Sk.

2. Optimal policy: Any Markov policy π∗ that satisfies, for t = 0, . . . , T − 1,

π∗t (s) ∈ arg max
a∈At

{
rt(s, a) +

∑
s′∈St+1

pt(s
′|s, a)Vt+1(s′)

}
, s ∈ St,

is an optimal control policy. Furthermore, π∗ maximizes Jπ(s0) simultaneously for
every initial state s0 ∈ S0.

Note that Theorem 4.3 specifies an optimal control policy which is a deterministic
Markov policy.

Proof. Part (i):
We use induction to show that the stated backward recursion indeed yields the optimal

value function. The idea is simple, but some care is needed with the notation since we
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consider general policies, and not just Markov policies. The equality VT (s) = rT (s) follows
directly from the definition of VT .

We proceed by backward induction. Suppose that Vk+1(s) is the optimal value function
for time k + 1. We need to show that Vk(s) = Wk(s), where

Wk(s)
∆
= max

a∈Ak

{
rk(s, a) +

∑
s′∈Sk+1

pk(s
′|s, a)Vk+1(s′)

}
.

We will first establish that Vk(s) ≥Wk(s), and then that Vk(s) ≤Wk(s).
(a) We first show that Vk(s) ≥ Wk(s). For that purpose, it is enough to find a policy

πk so that V πk

k (s) = Wk(s).
Fix s ∈ Sk, and define πk as follows: Choose ak = ā, where

ā ∈ arg max
a∈Ak

{
rk(s, a) +

∑
s′∈Sk+1

pk(s
′|s, a)Vk+1(s′)

}
,

and then, after observing sk+1 = s′, proceed with the optimal tail policy πk+1(s′) that

obtains V
πk+1(s′)
k+1 (s′) = Vk+1(s′). Proceeding similarly to Subsection 4.5.2 above (value

iteration for a fixed policy), we obtain:

V πk

k (s) = rk(s, ā) +
∑

s′∈Sk+1

p(s′|s, ā)V
πk+1(s′)
k+1 (s′) (4.2)

= rk(s, ā) +
∑

s′∈Sk+1

p(s′|s, ā)Vk+1(s′) = Wk(s), (4.3)

as was required.
(b) To establish Vk(s) ≤ Wk(s), it is enough to show that V πk

k (s) ≤ Wk(s) for any
(general, randomized) ”tail” policy πk.

Fix s ∈ Sk. Consider then some tail policy πk = (πk, . . . πT−1). Note that this means
that at ∼ πt(a|hk:t), where hk:t = (sk, ak, sk+1, ak+1, . . . , st). For each state-action pair
s ∈ Sk and a ∈ Ak, let (πk|s, a) denote the tail policy πk+1 from time k+ 1 onwards which
is obtained from πk given that sk = s, ak = a. As before, by value iteration for a fixed
policy,

V πk

k (s) =
∑

a∈Ak
πk(a|s)

{
rk(s, a) +

∑
s′∈Sk+1

pk(s
′|s, a)V

(πk|s,a)
k+1 (s′)

}
.

But since Vk+1 is optimal,

V πk

k (s) ≤
∑

a∈Ak
πk(a|s)

{
rk(s, a) +

∑
s′∈Sk+1

pk(s
′|s, a)Vk+1(s′)

}
≤ max

a∈Ak

{
rk(s, a) +

∑
s′∈Sk+1

pk(s
′|s, a)Vk+1(s′)

}
= Wk(s),
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which is the required inequality in (b).
Part (ii) (Outline - exercise):
Let π∗ be the (Markov) policy defined in part 2 of Theorem 4.3. Using value iteration

for this policy, prove by backward induction that V π∗
k = Vk.

To summarize:

• The optimal value function can be computed by backward recursion. This recursive
equation is known as the dynamic programming equation, optimality equation, or
Bellman’s Equation.

• Computation of the value function in this way is known as the finite-horizon value
iteration algorithm.

• The value function is computed for all states at each stage.

• An optimal policy is easily derived from the optimal value.

• The optimization in each stage is performed in the action space. The total number
of minimization operations needed is T × |S| - each over |A| choices. This replaces
”brute force” optimization in policy space, with tremendous computational savings
as the number of Markov policies is |A|T×|S|.

4.5.4 The Q function

Let
Qk(s, a)

∆
= rk(s, a) +

∑
s′∈Sk

pk(s
′|s, a)Vk(s

′).

This is known as the optimal state-action value function, or simply as the Q-function.
Qk(s, a) is the expected return from stage k onward, if we choose ak = a and then proceed
optimally.

Theorem 4.3 can now be succinctly expressed as

Vk(s) = max
a∈Ak

Qk(s, a),

and
π∗k(s) ∈ arg max

a∈Ak
Qk(s, a).

The Q function provides the basis for the Q-learning algorithm, which is one of the basic
Reinforcement Learning algorithms.
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4.6 Exercises

Exercise 4.3 (Markov chains). Let {Xn} be a time-homogenous Markov processes in
discrete time which takes values in {0, 1, ..} (an infinite countable set).

1. Assume the process satisfies for each i ∈ {0, 1, ...}:

pi,0 = q, pi,i+1 = 1− q, 0 < q < 1.

Plot the state transition diagram for {0, 1, 2, 3}. If the chain is recurrent, find the
stationary distribution, if it is not find the transient states.

2. Consider the same process as above and assume P (X0 = 0) = 1. Define Yn =
|{τ : Xτ = 0, τ ≤ n}| as the number of visits to 0 until time n. Also define Zn =(
Xn Yn

)T
. Is {Zn} a Markov process? Is it recurrent? Is it transient?

3. Assume the process satisfies for each i ∈ {1, 2, ...}:

p0,1 = 1, pi,i+1 = pi,i−1 = 0.5.

Is the process recurrent? If so, find a stationary distribution if it exists or explain
why there is none. If the process is not recurrent, what are the transient states?
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Chapter 5

MDPs with Discounted Return

This lecture covers the basic theory and main solution methods for stationary MDPs over
an infinite horizon, with the discounted return criterion. In this case, stationary policies
are optimal.

The discounted return problem is the most ”well behaved” among all infinite horizon
problems (such as average return and stochastic shortest path), and the theory of it is
relatively simple, both in the planning and the learning contexts. For that reason, as well
as its usefulness, we will consider here the discounted problem and its solution in some
detail.

5.1 Problem Statement

We consider a stationary (time-invariant) MDP, with a finite state space S, finite action set
A, and transition kernel P = (P (s′|s, a)) over the infinite time horizon T = {0, 1, 2, . . .}.

Our goal is to maximize the expected discounted return, which is defined for each
control policy π and initial state s0 = s as follows:

Jπγ (s) = Eπ(
∞∑
t=0

γtr(st, at)|s0 = s)

≡ Eπ,s(
∞∑
t=0

γtr(st, at))

Here,

• r : S ×A→ R is the (running, or instantaneous) reward function.

• γ ∈ (0, 1) is the discount factor.
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We observe that γ < 1 ensures convergence of the infinite sum (since that the rewards
r(st, at) are uniformly bounded). With γ = 1 we obtain the total return criterion, which
is harder to handle due to possible divergence of the sum.

Let J∗γ (s) denote the maximal value of the discounted return, over all (possibly history
dependent and randomized) control policies, i.e.,

J∗γ (s) = sup
π∈ΠGR

Jπγ (s).

Our goal is to find an optimal control policy π∗ that attains that maximum (for all
initial states), and compute the numeric value of the optimal return J∗γ (s). As we shall see,
for this problem there always exists an optimal policy which is a (deterministic) stationary
policy.

Note: As usual, the discounted performance criterion can be defined in terms of cost:

Jπγ (s) = Eπ,s(
∞∑
t=0

γtc(st, at))

where c(s, a) is the running cost function. Our goal is then to minimize the discounted
cost Jπγ (s).

5.2 The Fixed-Policy Value Function

We start the analysis by defining and computing the value function for a fixed stationary
policy. This intermediate step is required for later analysis of our optimization problem,
and also serves as a gentle introduction to the value iteration approach.

For a stationary policy π : S → A, we define the value function V π(s), s ∈ S simply as
the corresponding discounted return:

V π(s)
∆
= Eπ,s

( ∞∑
t=0

γtr(st, at)

)
= Jπγ (s), s ∈ S

Lemma 5.1. V π satisfies the following set of |S| linear equations:

V π (s) = r(s, π(s)) + γ
∑

s′∈S
p(s′|s, π(s))V π(s′) , s ∈ S. (5.1)

Proof. We first note that

V π(s)
∆
= Eπ(

∞∑
t=0

γtr(st, at)|s0 = s)

= Eπ(

∞∑
t=1

γt−1r(st, at)|s1 = s),
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since both the model and the policy are stationary. Now,

V π(s) = r(s, π(s)) + Eπ(
∞∑
t=1

γtr(st, π(st))|s0 = s)

= r(s, π(s)) + Eπ

[
Eπ

( ∞∑
t=1

γtr(st, π(st))|s0 = s, s1 = s′

)∣∣∣∣∣ s0 = s

]

= r(s, π(s)) +
∑
s′∈S

p(s′|s, π(s))Eπ(
∞∑
t=1

γtr(st, π(st))|s1 = s′)

= r(s, π(s)) + γ
∑
s′∈S

p(s′|s, π(s))Eπ(
∞∑
t=1

γt−1r(st, at)|s1 = s′)

= r(s, π(s)) + γ
∑
s′∈S

p(s′|s, π(s))V π(s′).

The first equality is by the smoothing theorem. The second equality follows since s0 = s
and at = π(st), the third equality follows similarly to the finite-horizon case (Lemma
4.1 in the previous lecture), the fourth is simple algebra, and the last by the observation
above.

We can write the linear equations in (5.1) in vector form as follows. Define the column
vector rπ = (rπ(s))s∈S with components rπ(s) = r(s, π(s)), and the transition matrix P π

with components P π(s′|s) = p(s′|s, π(s)). Finally, let V π denote a column vector with
components V π(s). Then (5.1) is equivalent to the linear equation set

V π = rπ + γP πV π (5.2)

Lemma 5.2. The set of linear equations (5.1) or (5.2), with V π as variables, has a unique
solution V π, which is given by

V π = (I − γP π)−1rπ.

Proof. We only need to show that the square matrix I−γP π is non-singular. Let (λi) denote
the eigenvalues of the matrix P π. Since P π is a stochastic matrix (row sums are 1), then
|λi| ≤ 1. Now, the eignevalues of I−γP π are (1−γλi), and satisfy |1−γλi| ≥ 1−γ > 0.

Combining Lemma 5.1 and Lemma 5.2, we obtain

Proposition 5.1. The fixed-policy value function V π = [V π(s)] is the unique solution of
equation (5.2), given by

V π = (I − γP π)−1rπ.
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Proposition 5.1 provides a closed-form formula for computing V π. For large systems,
computing the inverse (I − γP π)−1 may be hard. In that case, the following value iteration
algorithm provides an alternative, iterative method for computing V π.

Algorithm 5.1. Fixed-policy value iteration

1. Let V0 = (V0(s))s∈S be arbitrary.

2. For n = 0, 1, 2, . . ., set

Vn+1 (s) = r(s, π(s)) + γ
∑

s′∈S
p(s′|s, π(s))Vn (s′) , s ∈ S

or, equivalently,
Vn+1 = rπ + γP πVn.

Proposition 5.2 (Convergence of fixed-policy value iteration). We have Vn → V π

component-wise, that is,
lim
n→∞

Vn(s) = V π(s), s ∈ S.

Proof. Note first that

V1 (s) = r(s, π(s)) + γ
∑

s′∈S
p(s′|s, π(s))V0 (s′)

= Eπ(r(s0, a0) + γV0(s1)|s0 = s).

Continuing similarly, we obtain that

Vn (s) = Eπ(
n−1∑
t=0

γtr(st, at) + γnV0(sn)|s0 = s).

Note that Vn (s) is the n-stage discounted return, with terminal reward rn(sn) = V0(sn).
Comparing with the definition of V π, we can see that

V π(s)− Vn (s) = Eπ(
∞∑
t=n

γtr(st, at)− γnV0(sn)|s0 = s).

Denoting Rmax = maxs,a|r(s, a)|, V̄0 = maxs|V (s)| we obtain

|V π(s)− Vn (s)| ≤ γn(
Rmax

1− γ
+ V̄0)

which converges to 0 since γ < 1.
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Comments:

• The proof provides an explicit bound on |V π(s) − Vn (s)|. It may be seen that the
convergence is exponential, with rate O(γn).

• Using vector notation, it may be seen that

Vn = rπ + P πrπ + . . .+ (P π)n−1rπ + (P π)nV0 =
n−1∑
t=0

(P π)trπ + (P π)nV0.

Similarly, V π =
∞∑
t=0

(P π)trπ.

In summary:

• Proposition 5.1 allows to compute V π by solving a set of |S| linear equations.

• Proposition 5.2 computes V π by an infinite recursion, that converges exponentially
fast.

5.3 Overview: The Main DP Algorithms

We now return to the optimal planning problem defined in Section 5.1. Recall that J∗γ (s) =
supπ∈ΠGR

Jπγ (s) is the optimal discounted return. We further denote

V ∗(s)
∆
= J∗γ (s), s ∈ S,

and refer to V ∗ as the optimal value function. Depending on the context, we consider V ∗

either as a function V ∗ : S → R, or as a column vector V ∗ = [V (s)]s∈S .
The following optimality equation provides an explicit characterization of the value

function, and shows that an optimal stationary policy can easily be computed if the value
function is known.

Theorem 5.1 (Bellman’s Optimality Equation). The following statements hold:

1. V ∗ is the unique solution of the following set of (nonlinear) equations:

V (s) = max
a∈A

{
r(s, a) + γ

∑
s′∈S

p(s′|s, a)V (s′)
}
, s ∈ S. (5.3)

2. Any stationary policy π∗ that satisfies

π∗(s) ∈ arg max
a∈A

{
r(s, a) + γ

∑
s′∈S

p(s′|s, a)V (s′)
}
,

is an optimal policy (for any initial state s0 ∈ S).

57



The optimality equation (5.3) is non-linear, and generally requires iterative algorithms
for its solution. The main iterative algorithms are value iteration and policy iteration.

Algorithm 5.2. Value iteration

1. Let V0 = (V0(s))s∈S be arbitrary.

2. For n = 0, 1, 2, . . ., set

Vn+1(s) = max
a∈A

{
r(s, a) + γ

∑
s′∈S

p(s′|s, a)Vn(s′)
}
, ∀s ∈ S

Theorem 5.2 (Convergence of value iteration). We have limn→∞Vn = V ∗ (component-
wise). The rate of convergence is exponential, at rate O(γn).

The value iteration algorithm iterates over the value functions, with asymptotic con-
vergence. The policy iteration algorithm iterates over stationary policies, with each new
policy better than the previous one. This algorithm converges to the optimal policy in a
finite number of steps.

Algorithm 5.3. Policy iteration

1. Initialization: choose some stationary policy π0.

2. For k = 0, 1, . . .:

(a) Policy evaluation: compute V πk . % For example, use the explicit formula V πk =
(I − γP πk)−1rπk .

(b) Policy Improvement: Compute πk+1, a greedy policy with respect to V πk :

πk+1(s) ∈ arg max
a∈A

{
r(s, a) + γ

∑
s′∈S

p(s′|s, a)V πk(s′)
}
, ∀s ∈ S.

(c) Stop if V πk+1 = V πk (or if V πk satisfied the optimality equation), else continue.

Theorem 5.3 (Convergence of policy iteration). The following statements hold:

1. Each policy πk+1 is improving over the previous one πk, in the sense that V πk+1 ≥ V πk

(component-wise).

2. V πk+1 = V πk if and only if πk is an optimal policy.

3. Consequently, since the number of stationary policies is finite, πk converges to the
optimal policy after a finite number of steps.

An additional solution method for DP planning relies on a Linear Programming for-
mulation of the problem. A Linear Program (LP) is simply an optimization problem with
linear objective function and linear constraints. We will provide additional details later in
this Lecture.
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5.4 Contraction Operators

The basic proof methods of the DP results mentioned above rely on the concept of a
contraction operator. We provide here the relevant mathematical background, and illustrate
the contraction properties of some basic Dynamic Programming operators.

5.4.1 The contraction property

Recall that a norm || · || over Rn is a real-valued function ‖ · ‖ : Rn → R such that, for any
pair of vectors x, y ∈ Rn and scalar a,

1. ||ax|| = |a| · ||ax||,

2. ||x+ y|| ≤ ||x||+ ||y||,

3. ||x|| = 0 only if x = 0.

Common examples are the p-norm ||x||p = (
∑n

i=1 |xi|
p)1/p for p ≥ 1, and in particular

the Euclidean norm (p = 2). Here we will mostly use the max-norm:

||x||∞ = max
1≤i≤n

|xi|.

Let T : Rd → Rd be a vector-valued function over Rd (d ≥ 1). We equip Rd with some
norm || · ||, and refer to T as an operator over Rd. Thus, T (v) ∈ Rd for any v ∈ Rd. We
also denote Tn(v) = T (Tn−1(v)) for n ≥ 2. For example, T 2(v) = T (T (v)).

Definition 5.1. The operator T is called a contraction operator if there exists β ∈ (0, 1)
(the contraction coefficient) such that

||T (v1)− T (v2)|| ≤ β||v1 − v2||,

for all v1, v2 ∈ Rd

5.4.2 The Banach Fixed Point Theorem

The following celebrated result applies to contraction operators. While we quote the result
for Rd, we note that it applies in much greater generality to any Banach space (a complete
normed space), or even to any complete metric space, with essentially the same proof.

Theorem 5.4 (Banach’s fixed point theorem). Let T : Rd → Rd be a contraction
operator. Then

1. The equation T (v) = v has a unique solution V ∗ ∈ Rd.

2. For any v0 ∈ Rd, limn→∞T
n(v0) = V ∗. In fact, ||Tn(v0)− V ∗|| ≤ O(βn), where β is

the contraction coefficient.
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Proof. (outline)

1. Uniqueness: Let V1 and V2 be two solutions of T (v) = v, then

||V1 − V2|| = ||T (V1)− T (V2)|| ≤ β||V1 − V2||,

which implies that ||V1 − V2|| = 0, hence V1 = V2.

Existence (outline): (i) show that Vn
∆
= Tn(V0) (with V0 arbitrary) is a Cauchy

sequence. (ii) Since any Cauchy sequence in Rd converges, this implies that Vn
converges to some V ∗ ∈ Rd. (iii) Now show that V ∗ satisfies the equation T (v) = v.

2. We have just shown that, for any V0, Vn
∆
= Tn(V0) converges to a solution of T (v) = v,

and that solution was shown before to be unique. Furthermore, we have

||Vn − V ∗|| = ||T (Vn−1)− T (V ∗)||
≤ β||Vn−1 − V ∗|| ≤ . . . ≤ βn||V0 − V ∗||

5.4.3 The Dynamic Programming Operators

We next define the basic Dynamic Programming operators, and show that they are in fact
contraction operators.

For a fixed stationary policy π : S → A, define the fixed policy DP operator T π : R|S| →
R|S| as follows: For any V = (V (s)) ∈ R|S|,

(T π(V ))(s) = r(s, a) + γ
∑

s′∈S
p(s′|s, π(s))V (s′), s ∈ S

In our column-vector notation, this is equivalent to T π(V ) = rπ + γP πV .
Similarly, define the discounted-return Dynamic Programming Operator T ∗ :

R|S| → R|S| as follows: For any V = (V (s)) ∈ R|S|,

(T ∗(V ))(s) = max
a∈A

{
r(s, a) + γ

∑
s′∈S

p(s′|s, a)V (s′)
}
, s ∈ S

We note that T π is a linear operator, while T ∗ is generally non-linear due to the
maximum operation.

Let ||V ||∞
∆
= maxs∈S |V (s)| denote the max-norm of V . Recall that 0 < γ < 1.

Theorem 5.5 (Contraction property). The following statements hold:

1. T π is a γ-contraction operator with respect to the max-norm, namely ||T π(V1) −
T π(V2)||∞ ≤ γ||V1 − V2||∞ for all V1, V2 ∈ R|S|.
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2. Similarly, T ∗ is an γ-contraction operator with respect to the max-norm.

Proof. 1. Fix V1, V2. For every state s,

|T π(V1)(s)− T π(V2)(s)| =
∣∣∣γ∑

s′
p(s′|s, π(s))[V1(s′)− V2(s′)]

∣∣∣
≤ γ

∑
s′
p(s′|s, π(s))

∣∣V1(s′)− V2(s′)
∣∣

≤ γ
∑

s′
p(s′|s, π(s))‖V1 − V2‖∞ = γ‖V1 − V2‖∞ .

Since this holds for every s ∈ S the required inequality follows.

2. The proof here is more intricate due to the maximum operation. As before, we
need to show that |T ∗(V1)(s)− T ∗(V2)(s)| ≤ γ‖V1 − V2‖∞. Fixing the state s, we
consider separately the positive and negative parts of the absolute value:

(a) T ∗(V1)(s) − T ∗(V2)(s) ≤ γ‖V1 − V2‖∞: Let ā denote an action that attains
the maximum in T ∗(V1)(s), namely ā ∈ arg max

a∈A

{
r(s, a) + γ

∑
s′∈S p(s

′|s, a)V1(s′)
}

.

Then
T ∗(V1)(s) = r(s, ā) + γ

∑
s′∈S

p(s′|s, ā)V1(s′)

T ∗(V2)(s) ≥ r(s, ā) + γ
∑

s′∈S
p(s′|s, ā)V (s′)

Since the same action ā appears in both expressions, we can now continue to show
the inequality (a) similarly to 1.

(b) T ∗(V2)(s)− T ∗(V1)(s) ≤ γ‖V1 − V2‖∞: Follows symmetrically to (a).

The inequalities (a) and (b) together imply that |T ∗(V1)(s)−T ∗(V2)(s)| ≤ γ‖V1 − V2‖∞.
Since this holds for any state s, it follows that ||T ∗(V1)− T ∗(V2)||∞ ≤ γ‖V1 − V2‖∞.

5.5 Proof of Bellman’s Optimality Equation

We prove in this section Theorem 5.1, which is restated here:

Theorem (Bellman’s Optimality Equation). The following statements hold:

1. V ∗ is the unique solution of the following set of (nonlinear) equations:

V (s) = max
a∈A

{
r(s, a) + γ

∑
s′∈S

p(s′|s, a)V (s′)
}
, s ∈ S. (5.4)

2. Any stationary policy π∗ that satisfies

π∗(s) ∈ arg max
a∈A

{
r(s, a) + γ

∑
s′∈S

p(s′|s, a)V (s′)
}
,

is an optimal policy (for any initial state s0 ∈ S).
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We observe that the Optimality equation in part 1 is equivalent to V = T ∗(V ) where T ∗

is the optimal DP operator from the previous section, which was shown to be a contraction
operator with coefficient γ. The proof also uses the value iteration property of Theorem
5.2, which is proved in the next section.

Proof of Theorem 5.1: We prove each part.

1. As T ∗ is a contraction operator, existence and uniqueness of the solution to V =
T ∗(V ) follows from the Banach fixed point theorem. Let V̂ denote that solution. It
also follows by that theorem that (T ∗)n(V0)→ V̂ for any V0. But in Theorem 5.2 we
show that (T ∗)n(V0)→ V ∗, hence V̂ = V ∗, so that V ∗ is indeed the unique solution
of V = T ∗(V ).

2. By definition of π∗ we have

T π∗(V ∗) = T ∗(V ∗) = V ∗,

where the last equality follows from part 1. Thus the optimal value function satisfied
the equation T π∗V ∗ = V ∗. But we already know (from Prop. 5.2) that V π∗ is the
unique solution of that equation, hence V π∗ = V ∗. This implies that π∗ achieves the
optimal value (for any initial state), and is therefore an optimal policy as stated.

5.6 Value Iteration

The value iteration algorithm allows to compute the optimal value function V ∗ iteratively
to any required accuracy. The Value Iteration algorithm (Algorithm 5.2) can be stated as
follows:

1. Start with any initial value function V0 = (V0(s)).

2. Compute recursively, for n = 0, 1, 2, . . .,

Vn+1(s) = max
a∈A

∑
s′∈S

p(s′|s, a)[r(s, a, s′) + γVn(s′)], ∀s ∈ S.

3. Apply a stopping rule obtain a required accuracy (see below).

In terms of the DP operator T ∗, value iteration is simply stated as:

Vn+1 = T ∗(Vn), n ≥ 0.

Note that the number of operations for each iteration is O(|A| · |S|2). Theorem 5.2 states
that Vn → V ∗, exponentially fast. The proof follows.
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Proof of Theorem 5.2: Using our previous results on value iteration for the finite-horizon
problem, it follows that

Vn(s) = max
π

Eπ,s(
n−1∑
t=0

γtRt+γ
nV0(sn)).

Comparing to the optimal value function

V ∗(s) = max
π

Eπ,s(

∞∑
t=0

γtRt),

it may be seen that that

|Vn(s)− V ∗(s)| ≤ γn(
Rmax

1− γ
+ ||V0||∞).

As γ < 1, this implies that Vn converges to V ∗γ exponentially fast.

5.6.1 Error bounds and stopping rules:

It is important to have an on-line criterion for the accuracy of the n-the step solution
Vn. The exponential bound in the last theorem is usually too crude and can be improved.
Since our goal is to find an optimal policy, we need to know how errors in V ∗ affect the
sub-optimality of the derived policy. We quote some useful bounds without proof. More
refined error bounds can be found in the texts on Dynamic Programming.

1. The distance of Vn from the optimal solution is upper bounded as follows:

||Vn − V ∗||∞ ≤ γ
1−γ ||Vn − Vn−1||∞

Note that the right-hand side depends only on the computed values on the last two
rounds, and hence is easy to apply. As the bound also decays exponentially (with
rate γ), it allows to compute the value function to within any required accuracy. In
particular, to ensure ||Vn−V ∗||∞ ≤ ε, we can use the stopping rule ||Vn−Vn−1||∞ ≤
1−γ
γ ε.

2. If ||V − V ∗||∞ ≤ ε, then any stationary policy π that is greedy with respect to V ,
i.e., satisfies

π(s) ∈ arg max
a∈A

{
r(s, a) + γ

∑
s′∈S

p(s′|s, a)Vn(s′)
}
,

is 2ε-optimal, namely ||V π−V ∗||∞ ≤ 2ε. This allows obtain a 2ε-optimal policy from
an ε-approximation of V ∗.
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5.7 Policy Iteration

The policy iteration algorithm, introduced by Howard (1960), computes an optimal policy
π∗ in a finite number of steps. This number is typically small (on the same order as |S|).

The basic principle behind Policy Iteration is Policy Improvement. Let π be a stationary
policy, and let V π denote its value function. A stationary policy π̄ is called π- improving
if it is a greedy policy with respect to V π, namely

π̄(s) ∈ arg max
a∈A

{
r(s, a) + γ

∑
s′∈S

p(s′|s, a)V π(s′)
}
, s ∈ S.

Lemma 5.3 (Policy Improvement). We have V π̄ ≥ V π (component-wise), and equality
holds if and only if π is an optimal policy.

Proof. Observe first that

V π = T π(V π) ≤ T ∗(V π) = T π̄(V π)

The first equality follows since V π is the value function for the policy π, the inequality fol-
lows because of the maximization in the definition of T ∗, and the last equality by definition
of the improving policy π̄.

It is easily seen that T π is a monotone operator (for any policy π), namely V1 ≤ V2

implies T πV1 ≤ T πV2. Applying T π̄γ repeatedly to both sides of the above inequality
V π ≤ T π̄V π therefore gives

V π ≤ T π̄(V π) ≤ (T π̄)2(V π) ≤ · · · ≤ lim
n→∞

(T π̄)n(V π) = V π̄,

where the last equality follows by value iteration. This establishes the first claim. The
equality claim is left as an exercise.

The policy iteration algorithm performs successive rounds of policy improvement, where
each policy πk+1 improves the previous one πk. Since the number of stationary policies is
bounded, so is the number of strict improvements, and the algorithm must terminate with
an optimal policy after a finite number of steps.

In terms of computational complexity, Policy Iteration requires O(|A| · |S|2 + |S|3)
operations per step, with the number of steps being typically small. In contrast, Value
Iteration requires O(|A| · |S|2) per step, but the number of required iterations may be
large, especially when the discount factor γ is close to 1.

5.8 Some Variants on Value Iteration and Policy Iteration

5.8.1 Value Iteration - Gauss Seidel Iteration

In the standard value iteration: Vn+1 = T ∗(Vn), the vector Vn is held fixed while all entries
of Vn+1 are updated. An alternative is to update each element Vn(s) of that vector as
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to Vn+1(s) as soon as the latter is computed, and continue the calculation with the new
value. This procedure is guaranteed to be ”as good” as the standard one, in some sense,
and often speeds up convergence.

5.8.2 Asynchronous Value Iteration

Here, in each iteration Vn ⇒ Vn+1, only a subset of the entries of Vn (namely, a subset
of all states) is updated. It can be shown that if each state is updated infinitely often,
then Vn → V ∗. Asynchronous update can be used to focus the computational effort on
”important” parts of a large-state space.

5.8.3 Modified (a.k.a. Generalized or Optimistic) Policy Iteration

This scheme combines policy improvement steps with value iteration for policy evaluation.
This way the requirement for exact policy evaluation (computing V πk = (I − γP πk)−1rπk)
is avoided.

The procedure starts with some initial value vector V0, and iterates as follows:

• Greedy policy computation:

Compute πk ∈ arg maxπT
π(Vk), a greedy policy with respect to Vk.

• Partial value iteration:

Perform mk steps of value iteration, Vk+1 = (T πkγ )mk(Vk).

This algorithm guarantees convergence of Vk to V ∗.

5.9 Linear Programming Solutions

An alternative approach to value and policy iteration is the linear programming method.
Here the optimal control problem is formulated as a linear program (LP), which can be
solved efficiently using standard LP solvers. There are two formulations: primal and dual.
As this method is less related to learning we will only sketch it briefly.

5.9.1 Some Background on Linear Programming

A Linear Program (LP) is an optimization problem that involves minimizing (or maximiz-
ing) a linear objective function subject to linear constraints. A standard form of a LP
is

minimize bTx, subject to Ax ≥ c, x ≥ 0. (5.5)

where x = (x1, x2, . . . , xn)T is a vector of real variables arranged as a column vector. The
set of constraints is linear and defines a convex polytope in Rn, namely a closed and convex
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set U that is the intersection of a finite number of half-spaces. U has a finite number of
vertices, which are points that cannot be generated as a convex combination of other points
in U . If U is bounded, it equals the convex combination of its vertices. It can be seen that
an optimal solution (if finite) will be in one of these vertices.

The LP problem has been extensively studied, and many efficient solvers exist. In
1947, Danzig introduced the Simplex algorithm, which essentially moves greedily along
neighboring vertices. In the 1980’s effective algorithms (interior point and others) were
introduced which had polynomial time guarantees.

Duality: The dual of the LP in (5.5) is defined as the following LP:

maximize cT y, subject to AT y ≤ b, y ≥ 0. (5.6)

The two dual LPs have the same optimal value, and the solution of one can be obtained
from that of the other. The common optimal value can be understood by the following
computation:

min
x≥0,Ax≥c

bTx = min
x≥0

max
y≥0

{
bTx+ yT (c−Ax)

}
= max

y≥0
min
x≥0

{
cT y + xT (b−Ay)

}
= max

y≥0,Ay≤b
cTx.

where the second equality follows by the min-max theorem.

Note: For an LP of the form:

minimize bTx, subject to Ax ≥ c,

the dual is
maximize cT y, subject to AT y = b, y ≥ 0.

5.9.2 The Primal LP

Recall that V ∗satisfies the optimality equations:

V (s) = max
a∈A

{
r(s, a) + γ

∑
s′∈S

p(s′|s, a)V (s′)
}
, s ∈ S.

Proposition 5.3. V ∗ is the smallest function (component-wise) that satisfies the following
set of inequalities:

v(s) ≥ r(s, a) + γ
∑

s′∈S
p(s′|s, a)v(s′), ∀s, a. (5.7)
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Proof. Suppose v = (v(s)) satisfies (5.7). That is, v ≥ T πv for every stationary policy.
Then by the monotonicity of T π,

v ≥ T π(v) ⇒ T π(v) ≥ (T π)2(v) ⇒ . . . ⇒ (T π)k(v) ≥ (T π)k+1v,

so that
v ≥ T π(v) ≥ (T π)2(v) ≥ . . . ≥ lim

n→∞
(T π)n(v) = V π.

Now, if we take π as the optimal policy we obtain v ≥ V ∗ (component-wise).

It follows from Proposition 5.3 that V ∗ is the solution of the following linear program:

Primal LP:
min
(v(s))

∑
s

v(s), subject to (5.7) .

Note that the number of inequality constraints is NS ×NA.

5.9.3 The Dual LP

The dual of our Primal LP turns out to be:

Dual LP:
max
(fs,a)

∑
s,a

fs,ar(s, a)

subject to:
fs,a ≥ 0 ∀s, a∑
s,a

fs,a = 1
1−γ

p0(s′) + γ
∑
s,a

p(s′|s, a)fs,a =
∑
a

fs′,a ∀s′ ∈ S

where p0 = (p0(s′)) is any probability vector (usually taken as a 0/1 vector).

Interpretation:

1. The variables fs,a correspond to the ”state action frequencies” (for a given policy):

fs,a ∼ E(
∞∑
t=0

γtI{st=s,at=a}) =
∞∑
t=0

γtP (st = s, at = a),

and p0(s′) ∼ p(s0 = s′) is the initial state distribution.
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2. It is easy to see that the discounted return can be written in terms of fs,a as∑
s
fs,ar(s, a), which is to be maximized.

3. The above constraints easily follow from the definition of fs,a.

Further comments:

• The optimal policy can by obtained directly from the solution of the dual using:

π(a|s) =
fs,a
fs
≡ fs,a∑

a fs,a

This policy can be stochastic if the solution to the LP is not unique. However, it will
be deterministic even in that case if we choose f as an extreme solution of the LP.

• The number of constraints in the dual is NSNA + (NS + 1). However, the inequality
constraints are simpler than in the primal.

5.10 Exercises

Exercise 5.1. You are inside a shady casino with your not so bright friend Jack. You sit
at the first table you see and the dealer offers you the following game: he presents you with
a Markov Decision Process where you start at s0 and can take one of two actions in each
state. The transition and rewards for each action are given as follows:

68



1. You allow Jack to play a few rounds. Since 21 is his favorite number, Jack starts
with the action 2, followed by the action 1 then again action 2 and so on. What is
Jack’s expected reward after 3 rounds (i.e., 3 actions)?

2. Jack changes his strategy and starts a new game (at s0) choosing the action to be
either 1 or 2 with equal probability. What will be Jack’s expected reward after 3
rounds now? What is the induced stationary policy over the states?

3. Write and solve Bellman equations for 3 rounds. What is the optimal policy?

4. Assuming each round there is a β probability of getting thrown out of the casino,
write down the infinite horizon cumulative reward. Conclude the connection between
the discount factor and the death rate of a process.

5. Write the Bellman equations for the infinite horizon discounted case in this problem.

Exercise 5.2 (Modeling an Inventory MDP). In this question we will model resource
allocation problems as MDPs. For each given scenario, write down what are the correspond-
ing states, actions, state-transitions and reward. Also, write down a suitable performance
criteria.

Remark: there may be multiple ways to model each scenario. Write down what you
think is the most reasonable.

1. Consider managing a hot-dog stand. At each hour, starting from 08:00, you decide
how many hot-dogs to order from your supplier, each costing c, and they arrive
instantly. At each hour, the number of hot-dog costumers is a random variable with
Poisson distribution with rate r, and each customer buys a hot-dog for price p. At
time 22:00 you close the stand, and throw away the remaining unsold hot-dogs.

2. Consider scenario (1), but now each supplied hot-dog can only stay fresh for three
hours, and then it has to be thrown away.

3. Consider scenario (1), but now during 12:00-14:00 costumers arrive at double rate.

4. Consider scenario (1), but now the stand is operated non-stop 24 hours a day. In
addition, there is a yearly inflation ratio of 3%.

5. Consider scenario (4), but now during 12:00-14:00 costumers arrive at double rate.

Exercise 5.3. Prove the following equality (from Section 5.2 of the lecture notes)

V π(s)
∆
= Eπ(

∞∑
t=0

γtr(st, at)|s0 = s)

= Eπ(
∞∑
t=1

γt−1r(st, at)|s1 = s).
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Exercise 5.4 (The cµ rule). Assume N jobs are scheduled to run on a single server. At
each time step (t = 0, 1, 2, ), the sever may choose one of the remaining unfinished jobs to
process. If job i is chosen, then with probability µi > 0 it will be completed, and removed
from the system; otherwise the job stays in the system, and remains in an unfinished state.

Notice that the job service is memoryless - the probability of a job completion is inde-
pendent of the number of times it has been chosen. Each job is associated with a waiting
cost ci > 0 that is paid for each time step that the job is still in the system. The server’s
goal is minimizing the total cost until all jobs leave the system.

1. Describe the problem as a Markov decision process. Write Bellman’s equation for
this problem.

2. Show that the optimal policy is choosing at each time step i∗ = arg maxi ciµi (from
the jobs that are still in the system).

Hint: Compute the value function for the proposed policy and show that it satisfies
the Bellman equation.

Remark: the cµ law is a fundamental result in queuing theory, and applies also to more
general scenarios.

Exercise 5.5 (Blackjack). Black Jack is a popular casino card game. The object is to
obtain a hand with the maximal sum of card values, but without exceeding 21. All face
cards count as 10, and the ace counts as 11 (unlike the original game). In our version, each
player competes independently against the dealer, and the card deck is infinite (i.e., the
probability of drawing a new card from the deck does not depend on the cards in hand).

The game begins with two cards dealt to the player and one to the dealer. If the player
starts with 21 it is called a natural (an ace and a 10 card), and he wins (reward = 1). If the
player did not start with 21 he can request additional cards one by one (hits), until he either
chooses to stop (sticks) or exceeds 21 (goes bust). If he goes bust, he loses (reward=-1), if
he sticks - then it becomes the dealer’s turn. The dealer first draws a second card. Then,
the dealer hits or sticks according to a fixed policy: he sticks on any sum of 17 or greater.
If the dealer busts, then the player wins (reward = 1). Otherwise, the outcome–win, lose,
or draw–is determined by whose final sum is closer to 21.

We represent a state as (X,Y ) where X is the current player sum and Y is the dealer’s
first card.

1. Describe the problem as a Markov decision process. What is the size of the state
space?

2. Use value iteration to solve the MDP. Plot the optimal value function V ∗ as a function
of (X,Y ).
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3. Use the optimal value function to derive an optimal policy. Plot the optimal policy
as follows: for each value of the dealer’s card (Y ), plot the minimal value for which
the policy sticks.

Here’s an example of the plots you should provide (the values should be different though)

Exercise 5.6 (DP operator not contracting in Euclidean norm). Recall the fixed-
policy DP operator T π defined as (see Section 5.4.3)

(T π (J)) (s) = r (s, π(s)) + γ
∑
s′∈S

p
(
s′|s, π(s)

)
J
(
s′
)
,

where γ < 1. We have seen that T π is a contraction in the sup-norm. Show that T π is not
necessarily a contraction in the Euclidean norm.

Hint: one possible approach is to consider the following 2-state MDP, and choose
appropriate values for p1, p2, γ to obtain a contradiction to the contraction property.

Exercise 5.7 (Contraction of (T ∗)k ). Recall that the Bellman operator T ∗ defined by

(T ∗ (J)) (s) = max
a∈A

{
r (s, a) + γ

∑
s′∈S

p
(
s′|s, a

)
J
(
s′
)}

is a γ-contraction. We will show that (T ∗)k is a γk-contraction.

71



1. For some J and J̄ let c = maxs
∣∣J (s)− J̄ (s)

∣∣. Show that

(T ∗)k (J − ce) ≤ (T ∗)k
(
J̄
)
≤ (T ∗)k (J + ce) , (5.8)

where e is a vector of ones.

2. Now use (5.8) to show that (T ∗)k is a γk-contraction.

Exercise 5.8 (Second moment and variance of return). In the lectures we have
defined the value function V π(s) as the expected discounted return when starting from
state s and following policy π,

V π(s) = Eπ,s(
∞∑
t=0

γtr(st, at)).

We have seen that V π(s) satisfies a set of |S| linear equations (Bellman equation)

V π (s) = r(s, π(s)) + γ
∑

s′∈S
p(s′|s, π(s))V π(s′) , s ∈ S.

We now define Mπ(s) as the second moment of the discounted return when starting from
state s and following policy π,

Mπ(s) = Eπ,s

( ∞∑
t=0

γtr(st, at)

)2
 .

1. We will show that Mπ(s) satisfies a ’Bellman like’ set of equations. Write an expres-
sion for Mπ(s) that has a linear dependence on Mπ and V π.

Hint: start by following the derivation of the Bellman equation for V π.

2. How many equations are needed to solve in order to calculate Mπ(s) for all s ∈ S ?

3. We now define W π(s) as the variance of the discounted return when starting from
state s and following policy π,

W π(s) = Varπ,s

( ∞∑
t=0

γtr(st, at)

)
.

Explain how W π(s) may be calculated.

Exercise 5.9. Consider the modified policy iteration scheme of Section 5.8.3. Show that
extreme values of mk (which?) reduce this algorithm to the standard Value Iteration or
Policy Iteration.
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Chapter 6

Reinforcement Learning – Basic
Algorithms

6.1 Introduction

RL methods essentially deal with the solution of (optimal) control problems using on-line
measurements. We consider an agent who interacts with a dynamic environment, according
to the following diagram:

.

�

�

-

Agent Environment

Action

State

Reward

Our agent usually has only partial knowledge of its environment, and therefore will use
some form of learning scheme, based on the observed signals. To start with, the agent
needs to use some parametric model of the environment. We shall use the model of a
stationary MDP, with given state space and actions space. However, the state transition
matrix P = (p(s′|s, a)) and the immediate reward function r = (r(s, a, s′)) may not be
given. We shall further assume the the observed signal is indeed the state of the dynamic
proceed (fully observed MDP), and that the reward signal is the immediate reward rt, with
mean r(st, at).
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It should be realized that this is an idealized model of the environment, which is used
by the agent for decision making. In reality, the environment may be non-stationary, the
actual state may not be fully observed (or not even be well defined), the state and action
spaces may be discretized, and the environment may contain other (possibly learning)
decision makers who are not stationary. Good learning schemes should be designed with
an eye towards robustness to these modelling approximations.

Learning Approaches: The main approaches for learning in this context can be classi-
fied as follows:

• Indirect Learning: Estimate an explicit model of the environment (P̂ and r̂ in our
case), and compute an optimal policy for the estimated model (“Certainty Equiva-
lence” and R-MAX that we saw a few lectures ago).

• Direct Learning: The optimal control policy is learned without first learning an
explicit model. Such schemes include:

a. Search in policy space: Genetic Algorithms, Policy Gradient....

b. Value-function based learning, related to Dynamic Programming principles: Tem-
poral Difference (TD) learning, Q-learning, etc.

RL initially referred to the latter (value-based) methods, although today the name applies
more broadly. Our focus in the chapter will be on this class of algorithms.

Within the class of value-function based schemes, we can distinguish two major classes
of RL methods.

1. Policy-Iteration based schemes (“actor-critic” learning):

policy improvement"actor"

"critic" policy evaluation

{V(x)}

control
policy

learning
feedback

environment

The “policy evaluation” block essentially computes the value function V π under the
current policy (assuming a fixed, stationary policy). Methods for policy evaluation
include:
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(a) “Monte Carlo” policy evaluation.

(b) Temporal Difference methods - TD(λ), SARSA, etc.

The “actor” block performs some form of policy improvement, based on the policy
iteration idea: π̄ ∈ arg max{r+P πV π}. In addition, it is responsible for implementing
some “exploration” process.

2. Value-Iteration based Schemes: These schemes are based on some on-line ver-
sion of the value-iteration recursions: V ∗t+1 = maxπ[rπ + P πV ∗t ]. The basic learning
algorithm in this class is Q-learning.

6.2 Example: Deterministic Q-Learning

To demonstrate some key ideas, we start with a simplified learning algorithm that is suitable
for a deterministic MDP model, namely:

st+1 = f(st, at)

rt = r(st, at)

We consider the discounted return criterion:

V π(s) =

∞∑
t=0

γtr(st, at) , given s0 = s, at = π(st)

V ∗(s) = max
π

V π(s)

Recall our definition of the Q-function (or state-action value function), specialized to the
present deterministic setting:

Q(s, a) = r(s, a) + γV ∗(f(s, a))

The optimality equation is then

V ∗(s) = max
a

Q(s, a)

or, in terms of Q only:

Q(s, a) = r(s, a) + γmax
a′

Q(f(s, a), a′)

Our learning algorithm runs as follows:

• Initialize: Set Q̂(s, a) = Q0(s, a), for all s, a.
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• At each stage n = 0, 1, . . . :

– Observe sn, an, rn, sn+1.

– Update Q̂(sn, an): Q̂(sn, an) := rn + γmaxa′ Q̂(sn+1, a
′)

We note that this algorithm does not tell us how to choose the actions an. The following
result is from [Mitchell, Theorem 3.1].

Theorem 6.1 (Convergence of Q-learning for deterministic MDPS).
Assume a deterministic MDP model. Let Q̂n(s, a) denote the estimated Q-function before
the n-th update. If each state-action pair is visited infinitely-often, then limn→∞ Q̂n(s, a) =
Q(s, a), for all (s, a).

Proof. Let
∆n , ‖Q̂n −Q‖∞ = max

s,a
|Q̂n(s, a)−Q(s, a)| .

Then at every stage n:

|Q̂n+1(sn, an)−Q(sn, an)| = |rn + γmax
a′

Q̂n(sn+1, a
′)− (rn + γmax

a′′
Q(sn+1, a

′′))|

= γ|max
a′

Q̂n(sn+1, a
′)−max

a′′
Q(sn+1, a

′′)|

≤ γmax
a′
|Q̂n(sn+1, a

′)−Q(sn+1, a
′)| ≤ γ∆n .

Consider now some interval [n1, n2] over which all state-action pairs (s, a) appear at least
once. Using the above relation and simple induction, it follows that ∆n2 ≤ γ∆n1 . Since
γ < 1 and since there is an infinite number of such intervals by assumption, it follows that
∆n → 0.

Remarks:

1. The algorithm allows the use of an arbitrary policy to be used during learning. Such as
algorithm is called Off Policy. In contrast, On-Policy algorithms learn the properties
of the policy that is actually being applied.

2. We further note that the “next-state” s′ = sn+1 of stage n need not coincide with the
current state sn+1 of stage n+ 1. Thus, we may skip some sample, or even choose sn
at will at each stage. This is a common feature of off-policy schemes.

3. A basic requirement in this algorithm is that all state-action pairs will be samples
”often enough”. To ensure that we often use a specific exploration algorithm or
method. In fact, the speed of convergence may depend critically on the efficiency of
exploration. We shall discuss this topic in detail further on.
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6.3 Policy Evaluation: Monte-Carlo Methods

Policy evaluation algorithms are intended to estimate the value functions V π or Qπ for
a given policy π. Typically these are on-policy algorithms, and the considered policy is
assumed to be stationary (or ”almost” stationary). Policy evaluation is typically used as
the “critic” block of an actor-critic architecture.

Direct Monte-Carlo methods are the most straight-forward, and are considered here
mainly for comparison with the more elaborate ones. Monte-Carlo methods are based on
the simple idea of averaging a number of random samples of a random quantity in order
to estimate its average.

Let π be a fixed stationary policy. Assume we wish to evaluate the value function V π,
which is either the discounted return:

V π(s) = Eπ(

∞∑
t=0

γtr(st, at)|s0 = s)

or the total return for an SSP (or episodial) problem:

V π(s) = Eπ(
T∑
t=0

r(st, at)|s0 = s)

where T is the (stochastic) termination time, or time of arrival to the terminal state.
Consider first the episodial problem. Assume that we operate (or simulate) the system

with the policy π, for which we want to evaluate V π. Multiple trials may be performed,
starting from arbitrary initial conditions, and terminating at T (or truncated before).

After visiting state s, say at time ts, we add-up the total cost until the target is reached:

v̂(s) =
T∑
t=ts

Rt .

After k visits to s, we have a sequence of total-cost estimates:

v̂1(s), · · · , v̂k(s) .

We can now compute our estimate:

V̂k(s) =
1

k

k∑
i=1

v̂i(s) .

By repeating these procedure for all states, we estimate V π(·).
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State counting options: Since we perform multiple trials and each state can be visited
several times per trial, there are several options regarding the visits that will be counted:

a. Compute V̂ (s) only for initial states (s0 = s).

b. Compute V̂ (s) each time s is visited.

c. Compute V̂ (s) only on first visit of s at each trial.

Method (b) gives the largest number of samples, but these may be correlated (hence, lead
to non-zero bias for finite times). But in any case, V̂k(s)→ V π(s) is guaranteed as k →∞.
Obviously, we still need to guarantee that each state is visited enough – this depends on
the policy π and our choice of initial conditions for the different trials.

Remarks:

1. The explicit averaging of the v̂k’s may be replaced by the iterative computation:

V̂k(s) = V̂k−1(s) + αk

[
v̂k(s)− V̂k−1(s)

]
,

with αk = 1
k . Other choices for αk are also common, e.g. αk = γ

k , and αk = ε
(non-decaying gain, suitable for non-stationary conditions).

2. For discounted returns, the computation needs to be truncated at some finite time
Ts, which can be chosen large enough to guarantee a small error:

v̂(s) =

Ts∑
t=ts

(γ)t−tsRt .

6.4 Policy Evaluation: Temporal Difference Methods

6.4.1 The TD(0) Algorithm

Consider the total-return (SSP) problem with γ = 1. Recall the fixed-policy Value Iteration
procedure of Dynamic Programming:

Vn+1(s) = Eπ(r(s, a) + Vn(s′)) = r(s, π(s)) +
∑
s′

p(s′|s, π(s))Vn(s′) , ∀s ∈ S,

or Vn+1 = rπ + P πVn, which converges to V π.
Assume now that rπ and P π are not given. We wish to devise a “learning version” of

the above policy iteration.
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Let us run or simulate the system with policy π. Suppose we start with some estimate
V̂ of V π. At time n, we observe sn, rn and sn+1. We note that [rn+V̂ (sn+1)] is an unbiased
estimate for the right-hand side of the value iteration equation, in the sense that

Eπ(rn + V̂ (sn+1)|sn) = r(sn, π(sn)) +
∑
s′

p(s′|sn, π(sn))Vn(s′)

However, this is a noisy estimate, due to randomness in r and s′. We therefore use it to
modify V̂ only slightly, according to:

V̂ (sn) := (1− αn)V̂ (sn) + αn[rn + V̂ (sn+1)]

= V̂ (sn) + αn[rn + V̂ (sn+1)− V̂ (sn)]

Here αn is the gain of the algorithm. If we define now

dn , rn + V̂ (sn+1)− V̂ (sn)

we obtain the update rule:
V̂ (sn) := V̂ (sn) + αndn

dn is called the Temporal Difference. The last equation defines the TD(0) algorithm.

Note that V̂ (sn) is updated on basis of V̂ (sn+1), which is itself an estimate. Thus, TD
is a “bootstrap” method: convergence of V̂ at each states s is inter-dependent with other
states.

Convergence results for TD(0) (preview):

1. If αn ↘ 0 at suitable rate (αn ≈ 1/no. of visits to sn), and each state is visited i.o.,
then V̂n → V π w.p. 1.

2. If αn = α0 (a small positive constant) and each state is visited i.o., then V̂n will
“eventually” be close to V π with high probability. That is, for every ε > 0 and δ > 0
there exists α0 small enough so that

lim
n→∞

Prob(|V̂n − V π| > ε) ≤ δ .

6.4.2 TD with `-step look-ahead

TD(0) looks only one step in the “future” to update V̂ (sn), based on rn and V̂ (sn+1).
Subsequent changes will not affect V̂ (sn) until sn is visited again.

Instead, we may look ` steps in the future, and replace dn by

d(`)
n ,

`−1∑
m=0

rn+m + V̂ (sn+`)− V̂ (sn)

=
`−1∑
m=0

dn+m
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where dn is the one-step temporal difference as before. The iteration now becomes

V̂ (sn) := V̂ (sn) + αnd
(`)
n .

This is a “middle-ground” between TD(0) and Monte-Carlo evaluation!

6.4.3 The TD(λ) Algorithm

Another way to look further ahead is to consider all future Temporal Differences with a
“fading memory” weighting:

V̂ (sn) := V̂ (sn) + α(

∞∑
m=0

λmdn+m) (6.1)

where 0 ≤ λ ≤ 1. For λ = 0 we get TD(0); for λ = 1 we obtain the Monte-Carlo sample!
Note that each run is terminated when the terminal state is reached, say at step T . We

thus set dn ≡ 0 for n ≥ T .
The convergence properties of TD(λ) are similar to TD(0). However, TD(λ) often

converges faster than TD(0) or direct Monte-Carlo methods, provided that λ is properly
chosen. This has been experimentally observed, especially when function approximation is
used for the value function.

Implementations of TD(λ): There are several ways to implement the relation in (6.1).

1. Off-line implementation: V̂ is updated using (6.1) at the end of each simulation run,
based on the stored (st, dt) sequence from that run.

2. Each dn is used as soon as becomes available, via the following backward update
(also called “on-line implementation”):

V̂ (sn−m) := V̂ (sn−m) + α · λmdn , m = 0, . . . , n . (6.2)

This requires only keeping track of the state sequence (st, t ≥ 0). Note that if some
state s appears twice in that sequence, it is updated twice.

3. Eligibility-trace implementation:

V̂ (s) := V̂ (s) + αdnen(s) , s ∈ S (6.3)

where

en(s) =
n∑
k=0

λn−k1{sk = s}

is called the eligibility trace for state s.
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The eligibility trace variables en(s) can also be computed recursively. Thus, set
e0(s) = 0 ∀s, and

en(s) := λen−1(s) + 1{sn = s} =

{
λ · en−1(s) + 1 if s = sn
λ · en−1(s) if s 6= sn

(6.4)

Equations (6.3) and (6.4) provide a fully recursive implementation of TD(λ).

6.4.4 TD Algorithms for the Discounted Return Problem

For γ-discounted returns, we obtain the following equations for the different TD algorithms:

1. TD(0):

V̂ (sn) := (1− α)V̂ (sn) + α[rn + γV̂ (sn+1]

= V̂ (sn) + α · dn,

with dn , rn + γV (sn+1)− V (sn).

2. `-step look-ahead:

V̂ (sn) := (1− α)V̂ (sn) + α[rn + γrn+1 + · · ·+ γ`Vn+`]

= V̂ (sn) + α[dn + γdn+1 + · · ·+ γ`−1dn+`−1]

3. TD(λ):

V̂ (sn) := V̂ (sn) + α

∞∑
k=0

(γλ)kdn+k .

The eligibility-trace implementation is:

V̂ (s) := V̂ (s) + αdnen(s) ,

en(s) := γλen−1(s) + 1{sn = s} .

6.4.5 Q-functions and their Evaluation

For policy improvement, what we require is actually the Q-function Qπ(s, a), rather than
V π(s). Indeed, recall the policy-improvement step of policy iteration, which defines the
improved policy π̂ via:

π̂(s) ∈ arg max
a
{r(s, a) + γ

∑
s′

p(s′|s, a)V π(s′)} ≡ arg max
a

Qπ(s, a) .

How can we estimate Qπ?
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1. Using V̂ π: If we know the one-step model parameters r and p, we may estimate V̂ π

as above and compute

Q̂π(s, a)
4
= r(s, a) + γ

∑
p(s′|s, a)V̂ π(s′) .

When the model is not known, this requires to estimate r and p on-line.

2. Direct estimation of Qπ: This can be done using the same methods as outlined for
V̂ π, namely Monte-Carlo or TD methods. We mention the following:

The SARSA algorithm: This is the equivalent of TD(0). At each stage we observe
(sn, an, rn, sn+1, an+1), and update

Q(sn, an) := Q(sn, an) + αn · dn
dn = rn + γQ(sn+1, an+1)−Q(sn, an),where an+1 = π(sn+1).

Similarly, the SARSA(λ) algorithm uses

Q(s, a) := Q(s, a) + αn(s, a) · dnen(s, a)

en(s, a) := γλen−1(s, a) + 1{sn = 1, an = a} .

Note that:
– The estimated policy π must be the one used (“on-policy” scheme).
– More variables are estimated in Q than in V .

6.5 Policy Improvement

Having studied the “policy evaluation” block of the actor/critic scheme, we turn to the
policy improvement part.

Ideally, we wish to implement policy iteration through learning:

(i) Using policy π, evaluate Q̂ ≈ Qπ. Wait for convergence.

(ii) Compute π̂ = arg max Q̂ (the “greedy policy” w.r.t. Q̂).

Problems:

a. Convergence in (i) takes infinite time.

b. Evaluation of Q̂ requires trying all actions – typically requires an exploration scheme
which is richer than the current policy π.
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To solve (a), we may simply settle for a finite-time estimate of Qπ, and modify π every
(sufficiently long) finite time interval. A more “smooth” option is to modify π slowly in
the “direction” of the maximizing action. Common options include:

(i) Gradual maximization: If a∗ maximizes Q̂(s, a), where s is the state currently exam-
ined, then set {

π(a∗|s) := π(a∗|s) + α · [1− π(a∗|s)]
π(a|s) := π(a|s)− α · π(a|s), a 6= a∗ .

Note that π is a randomized stationary policy, and indeed the above rule keeps π(·|s)
as a probability vector.

(ii) Increase probability of actions with high Q: Set

π(a|s) =
eβ(s,a)∑
a′ e

β(s,a′)

(a Boltzmann-type distribution), where β is updated as follows:

β(s, a) := β(s, a) + α[Q̂(s, a)− Q̂(s, a0)].

Here a0 is some arbitrary (but fixed) action.

(iii) “Pure” actor-critic: Same Boltzmann-type distribution is used, but now with

β(s, a) := β(s, a) + α[r(s, a) + γV̂ (s′)− V̂ (s)]

for (s, a, s′) = (sn, an, sn+1). Note that this scheme uses directly V̂ rather than Q̂.
However it is more noisy and harder to analyze than other options.

To address problem (b) (exploration), the simplest approach is to superimpose some
randomness over the policy in use. Simple local methods include:

(i) ε-exploration: Use the nominal action an (e.g., an = arg maxaQ(sn, a)) with proba-
bility (1 − ε), and otherwise (with probability ε) choose another action at random.
The value of ε can be reduced over time, thus shifting the emphasis from exploration
to exploitation.

(ii) Softmax: Actions at state s are chosen according to the probabilities

π(a|s) =
eQ(s,a)/θ∑
a e

Q(s,a)/θ
.

θ is the “temperature” parameter, which may be reduced gradually.

(iii) The above “gradual maximization” methods for policy improvement.
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These methods however may give slow convergence results, due to their local (state-by-
state) nature.

Another simple (and often effective) method for exploration relies on the principle of
optimism in the face of uncertainty. For example, by initializing Q̂ to high (optimistic)
values, we encourage greedy action selection to visit unexplored states.

Convergence analysis for actor-critic schemes is relatively hard. Existing results rely on
a two time scale approach, where the rate of policy update is assumed much slower than
the rate of value-function update.

6.6 Q-learning

Q-learning is the most notable representative of value iteration based methods. Here the
goal is to compute directly the optimal value function. These schemes are typically off-
policy methods – learning the optimal value function can take place under any policy
(subject to exploration requirements).

Recall the definition of the (optimal) Q-function:

Q(s, a) , r(s, a) + γ
∑
s′

p(s′|s, a)V ∗(s′) .

The optimality equation is then V ∗(s) = maxaQ(s, a) , s ∈ S, or in terms of Q only:

Q(s, a) = r(s, a) + γ
∑
s′

p(s′|s, a) max
a′

Q(s′, a′) , s ∈ S, a ∈ A .

The value iteration algorithm is given by:

Vn+1(s) = max
a
{r(s, a) + γ

∑
s′

p(s′|s, a)Vn(s′)} , s ∈ S

with Vn → V ∗. This can be reformulated as

Qn+1(s, a) = r(s, a) + γ
∑
s′

p(s′|s, a) max
a′

Qn(s′, a′) , (6.5)

with Qn → Q.
We can now define the on-line (learning) version of the Q-value iteration equation.

The Q-learning algorithm: – initialize Q̂.
– At stage n: Observe (sn, an, rn, sn+1), and let

Q̂(sn, an) := (1− αn)Q̂(sn, an) + αn[rn + γmax
a′

Q̂(sn+1, a
′)]

= Q̂(sn, an) + αn[rn + γmax
a′

Q̂(sn+1, a
′)− Q̂(sn, an)] .

The algorithm is obviously very similar to the basic TD schemes for policy evaluation,
except for the maximization operation.
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Convergence: If all (s, a) pairs are visited i.o., and αn ↘ 0 at appropriate rate, then
Q̂n → Q∗.

Policy Selection:

– Since learning the Q∗ does not depend on optimality of the policy used, we can focus
on exploration during learning. However, if learning takes place while the system is
in actual operation, we may still need to use a close-to-optimal policy, while using
the standard exploration techniques (ε-greedy, softmax, etc.).

– When learning stops, we may choose a greedy policy:

π̂(s) = max
a

Q̂(s, a) .

Performance: Q-learning is very convenient to understand and implement; however,
convergence may be slower than actor-critic (TD(λ)) methods, especially if in the latter
we only need to evaluate V and not Q.

6.7 Exercises

Exercise 6.1 (The cµ rule revisited). Consider again the job processing domain of
Exercise 5.4:

N jobs are scheduled to run on a single server. At each time step (t = 0, 1, 2, ), the
sever may choose one of the remaining unfinished jobs to process. If job i is chosen, then
with probability µi > 0 it will be completed, and removed from the system; otherwise the
job stays in the system, and remains in an unfinished state. Notice that the job service is
memoryless - the probability of a job completion is independent of the number of times it
has been chosen. Each job is associated with a waiting cost ci > 0 that is paid for each
time step that the job is still in the system. The server’s goal is minimizing the total cost
until all jobs leave the system.

This time, we will solve the problem numerically, testing the various dynamic program-
ming and reinforcement learning algorithms we have learned so far.

We consider the following specific case, with N = 5:

i 1 2 3 4 5

µi 0.6 0.5 0.3 0.7 0.1

ci 1 4 6 2 9

Part 1 - Planning In this part all the Matlab functions may use the true model (i.e.,
the µi’s and ci’s).

1. How many states and actions are in the problem?
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Let S denote the state space. A deterministic policy π is a mapping from states to actions.
In our case, it will be represented in Matlab as a vector of length |S|, in which each element
denotes the selected action (1, . . . , N) for the corresponding state.

2. Write a function (in Matlab) that take as input a policy, and returns the correspond-
ing value function V π, also represented as a vector of length |S|. You can solve it
either directly by matrix inversion, or iteratively. Remember that the value of the
terminal state (no more jobs left) is zero by definition.

3. Plot the values of the policy πc that selects the job with the maximal cost ci, from
the remaining unfinished jobs.

4. Write a function that calculates the optimal policy π∗ using the policy iteration
algorithm, and execute it, starting from the initial policy πc. For each iteration of
the algorithm, plot the value of the initial state s0 (no jobs completed) for the current
policy. How many steps are required for convergence?

5. Compare the optimal policy π∗ obtained using policy iteration to the cµ law. Also
plot V π∗ vs. V πc .

6. Write a simulator of the problem: a function that takes in a state s and action a, and
returns the cost of the state c(s), and a random next state s′, distributed according
to the transition probabilities of the problem.

Part 2 - Learning In this part the learning algorithms cannot use the true model
parameters, but only have access to the simulator function written above.

7. Policy evaluation: consider again the policy πc, and use the TD(0) algorithm to
learn the value function V πc . Start from V̂TD(s) = 0 for all states. Experiment with
several step size αn schedules:

(a) an = 1/ (no. of visits to sn)

(b) an = 0.01

(c) an = 10
100+(no. of visits to sn)

For each step-size schedule, plot the errors
∥∥∥V πc − V̂TD

∥∥∥
∞

and
∣∣∣V πc(s0)− V̂TD(s0)

∣∣∣
as a function of iteration n. Explain the motivation behind each step-size schedule,
and how it reflects in the results.

8. Now, run policy evaluation using TD(λ). Choose your favorite step-size schedule, and

plot the errors
∥∥∥V πc − V̂TD

∥∥∥
∞

and
∣∣∣V πc(s0)− V̂TD(s0)

∣∣∣ as a function of iteration n

for several choices of λ. Repeat each experiment 20 times and display average results.
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9. Q-learning: run Q-learning to find the optimal policy. Start from Q̂(s, a) = 0 for all
states and actions. Experiment with the 3 previous step-size schedules. Use ε-greedy
exploration, with ε = 0.1.

For some Q̂, let πQ̂ denote the greedy policy w.r.t. Q̂, i.e., πQ̂(s) = arg minaQ̂(s, a).

For each step-size schedule, plot the errors ‖V ∗ − V πQ̂‖∞ and
∣∣∣V ∗(s0)− arg minaQ̂(s0, a)

∣∣∣
as a function of iteration n. You may use the policy evaluation function you wrote
in (2) to calculate V πQ̂ . If this step takes too long, you may plot the errors only for
n = 100, 200, 300, ... etc.

10. Repeat the previous Q-learning experiment for your favorite step-size schedule but
now with ε = 0.01. Compare.

87



Chapter 7

The Stochastic Approximation
Algorithm

7.1 Stochastic Processes – Some Basic Concepts

7.1.1 Random Variables and Random Sequences

Let (Ω,F , P ) be a probability space, namely:

– Ω is the sample space.

– F is the event space. Its elements are subsets of Ω, and it is required to be a σ-
algebra (includes ∅ and Ω; includes all countable union of its members; includes all
complements of its members).

– P is the probability measure (assigns a probability in [0,1] to each element of F , with
the usual properties: P (Ω) = 1, countably additive).

A random variable (RV) X on (Ω,F) is a function X : Ω→ R, with values X(ω). It is
required to be measurable on F , namely, all sets of the form {ω : X(ω) ≤ a} are events in
F .

A vector-valued RV is a vector of RVs. Equivalently, it is a function X : Ω→ Rd, with
similar measurability requirement.

A random sequence, or a discrete-time stochastic process, is a sequence (Xn)n≥0 of
Rd-valued RVs, which are all defined on the same probability space.

7.1.2 Convergence of Random Variables

A random sequence may converge to a random variable, say to X. There are several useful
notions of convergence:
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1. Almost sure convergence (or: convergence with probability 1):

Xn → a.s.X if P{ lim
n→∞

Xn = X} = 1 .

2. Convergence in probability:

Xn → pX if lim
n→∞

P (|Xn −X| > ε) = 0 , ∀ε > 0 .

3. Mean-squares convergence (convergence in L2):

Xn → L2X if E|Xn −X∞|2 → 0 .

4. Convergence in Distribution:

Xn → DistX (or Xn ⇒ X) if Ef(Xn)→ Ef(X)

for every bounded and continuous function f .

The following relations hold:

a. Basic implications: (a.s. or L2) =⇒ p =⇒ Dist

b. Almost sure convergence is equivalent to

lim
n→∞

P{sup
k≥n
|Xk −X| > ε) = 0 , ∀ε > 0 .

c. A useful sufficient condition for a.s. convergence:

∞∑
n=0

P (|Xn −X| > ε) <∞ .

7.1.3 Sigma-algebras and information

Sigma algebras (or σ-algebras) are part of the mathematical structure of probability theory.
They also have a convenient interpretation as ”information sets”, which we shall find useful.

• Define FX , σ{X}, the σ-algebra generated by the RV X. This is the smallest
σ-algebra that contains all sets of the form {X ≤ a} ≡ {ω ∈ Ω : X(ω) ≤ a}.

• We can interpret σ{X} as carrying all the information in X. Accordingly, we identify

E(Z|X) ≡ E(Z|FX) .

Also, “Z is measurable on σ{X}” is equivalent to: Z = f(X) (with the additional
technical requirement that f is a Borel measurable function).
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• We can similarly define Fn = σ{X1, . . . , Xn}, etc. Thus,

E(Z|X1, . . . , Xn) ≡ E(Z|Fn) .

• Note that Fn+1 ⊃ Fn: more RVs carry more information, leading Fn+1 to be finer,
or “more detailed”

7.1.4 Martingales

A martingale is defined as follows.

Definition 7.1 (Martingale). A sequence (Xk,Fk)k≥0 on a given probability space (Ω,F , P )
is a martingale if

a. (Fk) is a “filtration” – an increasing sequence of σ-algebras in F .

b. Each RV Xk is Fk-measurable.

c. E(Xk+1|Fk) = Xk (P–a.s.).

Note:

• (a) Property is roughly equivalent to:
Fk represents (the information in) some RVs (Y0, . . . , Yk),

and (b) then means: Xk is a function of (Y0, . . . , Yk).

• A particular case is Fn = σ{X1, . . . , Xn} (a self-martingale).

• The central property is (c), which says that the conditional mean of Xk+1 equals Xk.
This is obviously stronger than E(Xk+1) = E(Xk).

• The definition sometimes requires also that E|Xn| <∞, we shall assume that below.

• Replacing (c) by E(Xk+1|Fk) ≥ Xk gives a submartingale, while E(Xk+1|Fk) ≤ Xk

corresponds to a supermartingale.

Examples:

a. The simplest example of a martingale is

Xk =

k∑
`=0

ξ` ,

with {ξk} a sequence of 0-mean independent RVs, and Fk = σ(ξ0, . . . , ξk).
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b. Xk = E(X|Fk), where (Fk) is a given filtration and X a fixed RV.

Martingales play an important role in the convergence analysis of stochastic processes.
We quote a few basic theorems (see, for example: A.N. Shiryaev, Probability, Springer,
1996).

Theorem 7.1 (Martingale Inequalities). Let(Xk,Fk)k≥0 be a martingale. Then for
every λ > 0 and p ≥ 1

P

{
max
k≤n
|Xk| ≥ λ

}
≤ E|Xn|p

λp
,

and for p > 1
E[(max

k≤n
|Xk|)p] ≤ ( p

p−1)pE(|Xn|p) .

Martingale Convergence Theorems

Theorem 7.2 (Convergence with Bounded-moments). Consider a martingale (Xk,Fk)k≥0.
Assume that:

E|Xk|q ≤ C for some C <∞, q ≥ 1 and all k.
Then {Xk} converges (a.s.) to a RV X∞ (which is finite w.p. 1).

Theorem 7.3 (Positive Martingale Convergence). If (Xk,Fk) is a positive martingale
(namely Xn ≥ 0), then Xk converges (a.s.) to some RV X∞.

Definition 7.2 (Martingale Difference). The sequence (ξk,Fk) is a martingale differ-
ence sequence if property (c) is replaced by E(ξk+1|Fk) = 0.

In this case we have:

Theorem 7.4 (Martingale Difference Convergence). Suppose that for some 0 < q ≤
2,
∑∞

k=1
1
kqE(|ξk|q|Fk−1) <∞ (a.s.). Then limn→∞

1
n

∑n
k=1 ξk = 0 (a.s.).

For example, the conclusion holds if the sequence (ξk) is bounded, namely |ξk| ≤ C for
some C > 0 (independent of k).

Note:

• It is trivially seen that (ξn , Xn − Xn−1) is a martingale difference if (Xn) is a
martingale.

• More generally, for any sequence (Yk) and filtration (Fk), where Yk is measurable on
Fk, the following is a martingale difference:

ξk , Yk − E(Yk|Fk−1) .
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The conditions of the last theorem hold for this ξk if either:
(i) |Yk| ≤M ∀k for some constant M <∞,
(ii) or, more generally, E(|Yk|q|Fk−1) ≤M (a.s.) for some q > 1 and a finite RV M .
In that case we have

1

n

n∑
k=1

ξk ≡
1

n

n∑
k=1

(Yk − E(Yk|Fk−1))→ 0 (a.s.)

7.2 The Basic SA Algorithm

The stochastic approximations (SA) algorithm essentially solves a system of (nonlinear)
equations of the form

h(θ) = 0,

based on noisy measurements of h(θ).
More specifically, we consider a (continuous) function h : Rd → Rd, with d ≥ 1, which

depends on a set of parameters θ ∈ Rd. Suppose that h is unknown. However, for each θ
we can measure Y = h(θ) + ω, where ω is some 0-mean noise. The classical SA algorithm
(Robbins-Monro, 1951) is of the form

θn+1 = θn + αnYn

= θn + αn[h(θn) + ωn], n ≥ 0 .

Here αn is the algorithm the step-size, or gain.
Obviously, with zero noise (ωn ≡ 0) the stationary points of the algorithm coincide with

the solutions of h(θ) = 0. Under appropriate conditions (on αn, h and ωn) the algorithm
indeed can be shown to converge to a solution of h(θ) = 0.

References:

1. H. Kushner and G. Yin, Stochastic Approximation Algorithms and Applications,
Springer, 1997.

2. V. Borkar, Stochastic Approximation: A Dynamic System Viewpoint, Hindustan,
2008.

3. J. Spall, Introduction to Stochastic Search and Optimization: Estimation, Simulation
and Control, Wiley, 2003.

Some examples of the SA algorithm:
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a. Average of an i.i.d. sequence: Let (Zn)≥0 be an i.i.d. sequence with mean µ = E(Z0)
and finite variance. We wish to estimate the mean.

The iterative algorithm

θn+1 = θn +
1

n+ 1
[Zn − θn]

gives

θn =
1

n
θ0 +

1

n

n−1∑
k=0

Zk → µ (w.p. 1), by the SLLN.

This is a SA iteration, with αn = 1
n+1 , and Yn = Zn − θn. Writing Zn = µ+ ωn (Zn

is considered a noisy measurement of µ, with zero-mean noise ωn), we can identify
h(θ) = µ− θ.

b. Function minimization: Suppose we wish to minimize a (convex) function f(θ). De-
noting h(θ) = −∇f(θ) ≡ −∂f

∂θ , we need to solve h(θ) = 0.

The basic iteration here is

θn+1 = θn + αn[−∇f(θ) + ωn].

This is a “noisy” gradient descent algorithm.

When ∇f is not computable, it may be approximated by finite differences of the form

∂f(θ)

∂θi
≈ f(θ + eiδi)− f(θ − eiδi)

2δi
.

where ei is the i-th unit vector. This scheme is known as the “Kiefer-Wolfowitz
Procedure”.

Some variants of the SA algorithm

• A fixed-point formulation: Let h(θ) = H(θ) − θ. Then h(θ) = 0 is equivalent to the
fixed-point equation H(θ) = θ, and the algorithm is

θn+1 = θn + αn[H(θn)− θn + ωn] = (1− αn)θn + αn[H(θn) + ωn] .

This is the form used in the Bertsekas & Tsitsiklis (1996) monograph.

Note that in the average estimation problem (example a. above) we get H(θ) = µ,
hence Zn = H(θn) + ωn.

• Asynchronous updates: Different components of θ may be updated at different times
and rates. A general form of the algorithm is:

θn+1(i) = θn(i) + αn(i)Yn(i), i = 1, · · · , d
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where each component of θ is updated with a different gain sequence {αn(i)}. These
gain sequences are typically required to be of comparable magnitude.

Moreover, the gain sequences may be allowed to be stochastic, namely depend on the
entire history of the process up to the time of update. For example, in the TD(0)
algorithm θ corresponds to the estimated value function V̂ = (V̂ (s), s ∈ S), and we
can define αn(s) = 1/Nn(s), where Nn(s) is the number of visits to state s up to time
n.

• Projections: If is often known that the required parameter θ lies in some set B ⊂ Rd.
In that case we could use the projected iterates:

θn+1 = ProjB[θn + αnYn]

where ProjB is some projection onto B.

The simplest case is of course when B is a box, so that the components of θ are
simply truncated at their minimal and maximal values.

If B is a bounded set then the estimated sequence {θn} is guaranteed to be bounded
in this algorithm. This is very helpful for convergence analysis.

7.3 Assumptions

Gain assumptions To obtain convergence, the gain sequence needs to decrease to zero.
The following assumption is standard.

Assumption G1: αn ≥ 0, and

(i)

∞∑
n=1

αn =∞

(ii)
∞∑
n=1

α2
n <∞ .

A common example is αn =
1

na
, with 1

2 < a ≤ 1.

Noise Assumptions In general the noise sequence {ωn} is required to be “zero-mean”,
so that it will average out.

Since we want to allow dependence of ωn on θn, the sequence {ωn} cannot be assumed
independent. The assumption below allows {ωn} to be a martingale difference sequence.

Let
Fn−1 = σ{θ0, α0, ω0, · · · , ωn−1; θn, αn}

denote the ( σ-algebra generated by) the history sequence up to step n. Note that ωn is
measurable on Fn by definition of the latter.
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Assumption N1:

(a) The noise sequence {ωn} is a martingale difference sequence relative to the filtration
{Fn}, namely

E(ωn|Fn−1) = 0 (a.s.).

(b) For some finite constants A,B and some norm ‖ · ‖ on Rd,

E(‖ωn‖2|Fn−1) ≤ A+B‖θn‖2 (a.s.), ∀n ≥ 1 .

Example: Let ωn ∼ N(0, σn), where σn may depend on θn, namely σn = f(θn). For-
mally,

E(ωn|Fn) = 0

E(ω2
n|Fn) = f(θn)2,

and we require that f(θ)2 ≤ A+Bθ2.

Note: When {θn} is known to be bounded, then (b) reduces to

E(‖ωn‖2|Fn−1) ≤ C (a.s.) ∀n

for some C <∞. It then follows by the martingale difference convergence theorem that

lim
n→∞

1

n

n∑
k=1

ωk = 0 (a.s.).

However, it is often the case that θ is not known to be bounded a-priori.

Markov Noise: The SA algorithm may converge under more general noise assumptions,
which are sometimes useful. For example, for each fixed θ, ωn may be a Markov chain
such that its long-term average is zero (but E(ωn|Fn−1) 6= 0). We shall not go into that
generality here.

7.4 The ODE Method

The asymptotic behavior of the SA algorithm is closely related to the solutions of a certain
ODE (Ordinary Differential Equation), namely

d

dt
θ(t) = h(θ(t)),

or θ̇ = h(θ).
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Given {θn, αn}, we define a continuous-time process θ(t) as follows. Let

tn =
n−1∑
k=0

αk .

Define
θ(tn) = θn ,

and use linear interpolation in-between the tn’s.
Thus, the time-axis t is rescaled according to the gains {αn}.

0 1 2 3
n

t
t

(t)

t t t

α α α

θ
θ

θ

n

1

2

3

θ

0

θ

θ

0 1 32

0 1 2

Note that over a fixed ∆t, the “total gain” is approximately constant:∑
k∈K(t,∆t)

αk ' ∆t ,

where K(t,∆t) = {k : t ≤ tk < t+ ∆t}.
Now:

θ(t+ ∆t) = θ(t) +
∑

k∈k(t,∆t)

αk[h(θn) + ωn] .

• For t large, αk becomes small and the summation is over many terms; thus the noise
term is approximately “averaged out”:

∑
αkωk → 0.

• For ∆t small, θk is approximately constant over K(t,∆t) : h(θk) ' h(θ(t)).
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We thus obtain:
θ(t+ ∆t) ' θ(t) + ∆t · h(θ(t)) .

For ∆t→ 0, this reduces to the ODE:

θ̇(t) = h(θ(t)) .

To conclude:

• As n→∞, we “expect” that the estimates {θn} will follow a trajectory of the ODE
θ̇ = h(θ) (under the above time normalization).

• Note that the stationary point(s) of the ODE are given by θ∗ : h(θ∗) = 0.

• An obvious requirement for θn → θ∗ is θ(t) → θ∗ (for any θ(0)). That is: θ∗ is a
globally asymptotically stable equilibrium of the ODE.

This may this be viewed as a necessary condition for convergence of θn. It is also suf-
ficient under additional assumptions on h (continuity, smoothness), and boundedness
of {θn}.

7.5 Some Convergence Results

A typical convergence result for the (synchronous) SA algorithm is the following:

Theorem 7.5. Assume G1, N1, and furthermore:

(i) h is Lipschitz continuous.

(ii) The ODE θ̇ = h(θ) has a unique equilibrium point θ∗, which is globally asymptotically
stable.

(iii) The sequence (θn) is bounded (with probability 1).

Then θn → θ∗ (w.p. 1), for any initial conditions θ0.

Remarks:

1. More generally, even if the ODE is not globally stable, θn can be shown to converge
to an invariant set of the ODE (e.g., a limit cycle).

2. Corresponding results exist for the asynchronous versions, under suitable assumptions
on the relative gains.

3. A major assumption in the last result in the boundedness of (θn). In general this
assumption has to be verified independently. However, there exist several results that
rely on further properties of h to deduce boundedness, and hence convergence.
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The following convergence result from B. &T. (1996) relies on contraction properties
of H, and applies to the asynchronous case. It will directly apply to some of our learning
algorithms. We start with a few definitions.

• Let H(θ) = h(θ) + θ, so that h(θ) = H(θ)− θ.

• Recall that H(θ) is a contraction operator w.r.t. a norm ‖ · ‖ if

‖H(θ1)−H(θ2)‖ ≤ α‖θ1 − θ2‖

for some α < 1 and all θ1, θ2.

• H(θ) is a pseudo-contraction if the same holds for a fixed θ2 = θ∗. It easily follows
then that θ∗ is a unique fixed point of H.

• Recall that the max-norm is given by ‖θ‖∞ = maxi |θ(i)|. The weighted max-norm,
with a weight vector w, w(i) > 0, is given by

‖θ‖w = max
i
{|θ(i)|
w(i)

} .

Theorem 7.6 (Prop. 4.4. in B.&T.). Let

θn+1(i) = θn(i) + αn(i)[H(θn)− θn + ωn]i , i = 1, · · · , d .

Assume N1, and:

(a) Gain assumption: αn(i) ≥ 0, measurable on the “past”, and satisfy∑
n

αn(i) =∞,
∑
n

αn(i)2 <∞ (w.p. 1) .

(b) H is a pseudo-contraction w.r.t. some weighted max-norm.

Then θn → θ∗ (w.p. 1), where θ∗ is the unique fixed point of H.

Remark on “Constant Gain” Algorithms As noted before, in practice it is often
desirable to keep a non-diminishing gain. A typical case is αn(i) ∈ [α, α].

Here we can no longer expect “w.p. 1” convergence results. What can be expected is a
statement of the form:

• For α small enough, we have for all ε > 0

lim sup
n→∞

P (‖θn − θ∗‖ > ε) ≤ b(ε) · α ,

with b(ε) <∞.

This is related to “convergence in probability”, or “weak convergence”. We shall not
give a detailed account here.
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7.6 Exercises

Exercise 7.1 (Stochastic Approximation). Let {Xn}∞n=0 be an i.i.d. sequence of
bounded random variables with mean µ and variance σ2. Consider the following itera-
tive method for estimating µ, σ2:

µ̂0 = ŝ0 = 0,

µ̂n+1 = µ̂n + αn (Xn+1 − µ̂n) ,

ŝn+1 = ŝn + αn

(
(Xn+1 − µ̂n)2 − ŝn

)
.

Use the ODE method and show that (µ̂n, ŝn)→
(
µ, σ2

)
with probability one.
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Chapter 8

Basic Convergence Results for RL
Algorithms

We establish here some asymptotic convergence results for the basic RL algorithms, by
showing that they reduce to Stochastic Approximation schemes. We focus on the discounted-
cost problem, which is easiest. Analogous results exist for shortest-path problems under
the properness assumption (every policy terminates in expected finite time).

We do not directly consider here the issue of exploration, which is essential for conver-
gence to the optimal policy. Thus, where required we will simply assume that all actions
are sampled often enough.

8.1 Q-learning

Recall the Q-learning algorithm, in the following generalized form:

Qn+1(s, a) = Qn(s, a) + αn(s, a)[r(s, a, s′s,a) + γmax
a′

Qn(s′s,a, a
′)−Qn(s, a)]

where each s′s,a is determined randomly according to p(s′|s, a).
We allow here αn(s, a) = 0, so that any number of (s, a) pairs can be updated at each

stage.
This iteration can be viewed as an (asynchronous) Stochastic Approximation algorithm,

with Q ≡ θ. This leads to the following result.

Theorem 8.1 (Convergence of Q-learning.). Let γ < 1, and let Q∗ be the optimal γ-
discounted Q function. Assume

∞∑
h=0

αn(s, a) =∞,
∞∑
n=0

αn(s, a)2 <∞ (w.p. 1) ∀s, a .
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Then
lim
n→∞

Qn(s, a) = Q∗(s, a) (w.p. 1) ∀s, a .

Proof. Define the mapping H over the set of Q-functions as follows:

(HQ)(s, a) =
∑
s′

P (s′|s, a)[r(s, a, s′) + γmax
a′

Q(s′, a′)]

= E[r(s, a, sn+1) + γmax
a′

Q(sn+1, a
′)|sn = s, an = a] .

The above Q-learning algorithm can thus be written in the standard SA form, with the
noise vector ωn given by:

ωn(s, a) = r(s, a, s′s,a) + γmax
a′

Qn(s′s,a, a
′)− (HQ)(s, a) .

We proceed to verify the assumptions in Theorem 7.6:

(a) Step-size requirements hold here by assumption.

(b) Noise Assumption N1: The definition of ωn immediately implies that E(ωn(s, a)|Fn) =
0. It is further easily seen that

E(ωn(s, a)2|Fn) ≤ quadratic function of ‖Q‖∞ .

(c) Contraction: As with the discounted DP operator, it may be verified that H is a
γ-contraction w.r.t. the max-norm.

The required convergence result therefore follows by Theorem 7.6.

Remarks on basic (on-policy) Q-learning:

• In the basic version of the algorithm, we follow a state-action sequence (sn, an;n =
0, 1, · · · ) which is generated by some arbitrary policy, and at time n update Q(s, a)
only for (s, a) = (sn, an). This corresponds to the choice of gains:

αn(s, a) > 0 iff (s, a) = (sn, an) .

• For (s, a) = (sn, an), a typical choice for αn is

αn(s, a) = α̂(Nn(s, a))

where Nn is the number of previous visits to (s, a), and α̂(k) satisfies the standard
assumptions.

• For the step-size requirements in the theorem to hold in this case it is required that
each (s, a) pair is visited “relatively often”. This should be verified by appropriate
exploration policies!
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Undiscounted case: Under appropriate “Stochastic Shortest Path” assumptions, it can
be shown that H is a pseudo-contraction w.r.t. some weighted max-norm. Convergence
follows as above.

8.2 Convergence of TD(λ)

TD(0) can be analyzed exactly as Q-learning learning. TD(λ) is slightly more involved.
Recall the “on-line” version of TD(λ):

Vn+1(s) = Vn(s) + αnen(s)dn , s ∈ S

where

αn = gain

en(s) = eligibility trace coefficient

dn = rn + γVn(sn+1)− Vn(sn)

γ = discount factor

Requirements on the Eligibility Trace: Several variants of the algorithm are obtained
by different choices of en(s), such as:

(a) First-visit TD(λ):
en(s) = (γλ)n−m1(s)1{n ≥ m1(s)} ,

m1(s) is the time of first visit to state s (during the present run).

(b) Every-visit TD(λ):

en(s) =
∑

j:mj(s)≤n

(γλ)n−mj(s) ,

mj(s) is the time of jth visit to state s.

(c) First-visit with stopping:

en(s) = (γλ)n−m1(s)1{m1(s) ≤ n ≤ τ}

where τ is some stopping time – e.g., end of simulation run, or arrival to a state
whose value V (s) is known with high precision. en(s) is restarted after τ .

A general set of requirements on the eligibility coefficients en(s), which includes the
above cases, is given as follows:

(a) e0(s) = 0, en(s) ≥ 0.

(b) en(s) ≤ γen−1(s) if sn 6= s,
1 ≤ en(s) ≤ 1 + γen−1(s) if sn = s.

(c) en(s) is measurable on the past.
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Convergence: We now argue as follows.

• It may be seen that TD(λ) is in the form of the Stochastic Approximation algorithm,
with θn ≡ Vn, and

h(θ) ≡ h(V ) = (h(V )(s), s ∈ S) ,

h(V )(x) = Eπ[dn|Vn = V, sn = s]

=
∑
a

π(a|s)[r(s, a) + γ
∑
s′

p(s′|s, a)V (s′)]− V (s)

:= (HV )(s)− V (s) .

Here π is the fixed stationary policy that is used.

• For 0 < γ < 1 it is obvious that H is a contraction operator.

• For convergence we now need to verify that the effective gains αnen(s) satisfy the
“usual assumptions”. This may be verified by requiring that each state is visited
“relatively often”.

For γ = 1, a similar argument may be made for SSP (Stochastic Shortest Path) prob-
lems.

8.3 Actor-Critic Algorithms

Convergence of actor-critic type algorithms is harder to analyze. We describe here some
results from Konda and Borkar (2000).

Recall that the idea is to use a “fast” estimation loop to obtain V̂ (s), and a slower loop
to update the policy π̂ given V̂ .

Let Vn(s) and πn = (πn(a|s)) be the estimated value and policy at step n.

Algorithm 1

a. Value-function estimation (generalized TD(0)):

Vn+1 = Vn(s) + βn(s)[r(s, an(s)) + γVn(sn+1(s))− Vn(s)] , s ∈ Yn

where

Yn – set of states updated at step n

βn(s) – gains

sn+1(s) – next state, chosen with distribution p(s′) =
∑

a p(s
′|s, a)πn(a, s).
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b. Policy update:

πn+1(a|s) = πn(a|s) + αn(s, a)((Q̂n(s, a)− Q̂n(s, a0))) , (s, a) ∈ Zn
where

Zn – set of state-action pairs updated at step n

αn(s, a) – gains

Q̂n(s, a) := r(s, a) + γVn(sn+1(s, a))

sn+1(s, a) – next state, chosen according to p(s′|s, a)

a0 – a fixed reference action (for each state).

b’. Policy normalization:

For each s, project the vector (πn+1(a|s), a 6= a0) unto the following set of sub-
probability vectors:

{π : π(a) ≥ 0,
∑
a6=a0

π(a) ≤ 1}

and then let πn+1(a0|s) = 1−
∑

a6=a0 πn+1(a|s).

c. Rate requirements:

We first require that all updates are executed relatively often, namely that for some
∆ > 0,

lim inf
n→∞

n1(s)

n
≥ ∆ , lim inf

n→∞

n2(s, a)

n
≥ ∆ ,

where

n1(s) =
n∑
k=1

1{s ∈ Yk}

n2(s, a) =
n∑
k=1

1{(s, a) ∈ Zk} .

The gains are determined by some sequences α(m) and β(m), as

αn(s, a) = α(n2(s, a)) , βn(s) = β(n1(s)) .

The sequences α(m), β(m) should satisfy:

(1) The standard summability assumptions.

(2) Policy updates are “slower”: limm→∞
α(m)
β(m) = 0.

(3) Some additional technical assumptions ...

All these requirements are satisfied, e.g., by α(m) = 1
m logm , β(m) = 1

m .

Under these assumptions, Algorithm 1 converges to the optimal value and policy.
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Algorithm 2: Same as Algorithm 1, except for the policy update (b):

πn+1(a|s) = πn(a|s) + an(s, a)[{Q̂n(s, a)− Vn(s)}πn(a|s) + ξn(s, a)] .

ξn(s, a) are sequences of “small” noise terms, these are needed to prevent the algorithm
from getting stuck in the wrong “corners”.

Algorithm 3: Same as Algorithm 1, except for (b):

wn+1(a|s) = wn(a|s) + αn(s, a)[Q̂n(s, a)− Vn(s)]

and

πn(s, a) :=
exp(wn(s, a))∑
a′ exp(wn(s, a′))

.

In all these variants, convergence is proved using a “two-time scale” Stochastic Approx-
imation framework, the analysis is based on the ODE method which couples a “fast” ODE
(for V ) and a “slow” ODE (for π).
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Chapter 9

Approximate Dynamic
Programming

Recall Bellman’s dynamic programming equation

V (s) = max
a∈A

{
R(s, a) + γ

∑
s′∈S

p(s′|s, a)V (s′)

}
,

or in operator form, V = TV , where T is the Bellman operator.
Dynamic programming requires knowing the model and is only feasible for small prob-

lems. In large scale problems, we face the 3 curses of dimensionality:

1. S may be large, such that even writing down the policy is difficult. Moreover, S may
be continuous, for example in robotics applications.

2. A may be large. Example: resource allocation, where we have several projects and
need to assign different resources to each project.

3. p(s′|s, a) may be complicated: computing p(s′|s, a) requires summing over many
random events. Example: resource allocation.

9.1 Approximation approaches

There are 4 approaches to handle the curses of dimensionality:

1. Myopic: When p(s′|s, a) is approximately uniform across a, we may ignore the state
transition dynamics and simply use aπ(s) ≈ argmax

a∈A
{R(s, a)}. If R(s, a) is not known

exactly – replace it with an estimate.
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2. Lookahead policies: Rolling horizon/model-predictive control.
Simulate a horizon of T steps, and use

aπ(st|θ) = argmax
π′∈Π

E

[
t+T∑
t′=t

R(st′ , y
π′(st′))

]

3. Policy function approximation
Assume policy is of some parametric function form π = π(θ), θ ∈ Θ, and optimize
over function parameters.

Example 9.1 (Inventory management). Consider an inventory management prob-
lem, in which the state is the inventory level st, the demand is dt and the action is
the replenishment level at. The dynamics are given by:

st+1 = [st + at − dt]+.

The immediate reward is:

Rt = Rmin{dt, st + at} − caat − C[st + at − dt]+,

where R is the profit in satisfying the demand, ca is the ordering cost, and C is the
cost of not satisfying a demand.

One possible replenishment policy is:

aπ(st|θ) =

{
0 st > q

Q− st st ≤ q
, θ = (q,Q).

A different possibility is the softmax policy, given by

p(s, a) =
e−θα(s,a)∑
a′ e
−θα(s,a′)

, where α = R(s, a) or α = Q(s, a).

4. Value function approximation
Assume V (s) ≈ f(s, θ) where f is some approximation function, and optimize over
the parameters θ.
The most standard model is a linear combination of some k features (which are not
necessarily linear):

V̄ (s|θ) =

k∑
j=1

θjφj(s),

where θj are the model parameters and φj are the model’s features (a.k.a. basis
functions).
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Given V̄ , we can derive a policy by choosing the greedy action with respect to V̄ (cor-
responding to a lookahead of 1 time step). If a model or a simulator is also available,
we can also use a longer lookahead.

Example: a chess game with K-step lookahead

Feature
extraction

φ1(s), ..., φk(s)

Compute value
function
weights
θ1, ..., θk

V̄ (s) = f(s, θ)
π(st) =

argmax
π′∈Π

Eπ′
[∑t+K−1

t′=t R(st′) + V̄ (st+K))
]

Issues:

(a) Choosing the parametric class φ (architecture): e.g., Radial Basis Functions
(RBFs) or kernels. The difficulty is that the value function structure may be
hard to know in advance.

(b) Tuning the weights θ (learning): here we focus on simulation.
In the linear architecture, we can write

Ṽ (s; θ) = φ(s)>θ

(replacing θ with r for the parameters), or in matrix-vector form,

Ṽ (θ) = Φθ

Therefore tuning the parameters θ reduces to approximating V ∈ R|S| on S =
{Φθ : θ ∈ Rk} ⊆ R|S|.

9.2 Lookahead Policies

We will discuss several variants of lookahead policies. We focus on systems with a discrete,
and ‘small enough’ action space, but a large, possibly infinite state space.

The main idea in lookahead policies is that when we are at some state s, we will only
search ‘around’ the state s for the next action π(s). After we play the action, we observe
the next state, and repeat the search. Thus, we do not need to consider the whole state
space in advance, but only consider regions in state space which we actually visit. In the
control literature, this idea is often called Model Predictive Control (MPC).

9.2.1 Deterministic Systems: Tree Search

The simplest example of a lookahead policy is tree search in a deterministic system.
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Given s, and a (deterministic) simulator of the system, we can simulate the next state
for every possible action, building a tree of possible trajectories of the system, starting
from s, and continuing to some depth k. We then choose an action by:

π(s) = argmax
π′∈Π

[
k∑
t=0

γtr(st, π
′(st))

∣∣∣∣∣ s0 = s

]
,

Which can be solved using dynamic programming.
In this approach, the computation in each step requires O(|A|k) calls to the simulator for

building the tree, and O(k|A|k) computations for searching the tree. Note that there is no
dependence on |S|. The depth k should be chosen ‘deep enough’ to results in meaningful
actions. For example, in a discounted setting, recall that the k-horizon value function

satisfies ‖V k(s)− V ∗(s)‖∞ ≤ γk
(
Rmax
1−γ

)
, which can be used to set k.

9.2.2 Stochastic Systems: Sparse Sampling

When the system is stochastic, we cannot simply build a tree of possible future trajectories.
If we sample next states from our simulator, we can build a sampled version of a search tree.
Here, for each state s and action a in the tree, we will sample C next states s′1, . . . , s

′
C .

Then, the backup at s, a will be Q(s, a) = 1
C

∑C
i=1 r(s, a) + γmaxa′ Q(s′i, a

′). That is,
we replaced the expectation in the Bellman update with an empirical average. Since the
average concentrates around the mean (e.g., by Hoeffding inequality), it is expected that
the empirical averages will closely represent their expectations.

The following result is shown in [1]. The constants k and C can be set such that with

a per-state running time of ( |A|
ε(1−γ))

O
(

1
1−γ log 1

ε(1−γ)

)
, the obtained policy is ε−optimal, i.e.,

‖V k(s)− V ∗(s)‖∞ ≤ ε. Note again that there is no dependence on |S|.

9.2.3 Monte Carlo Tree Search

While the sparse sampling above does not depend on |S|, the exponential dependence
on the horizon and number of actions makes it impractical for many cases. The insight
in Monte-Carlo Tree Search (MCTS) is that investing the same simulation efforts for all
possible future actions is wasteful, and we should instead focus our search efforts on the
most promising future outcomes.

The first idea in MCTS is to replace the stage-wise tree building approach with a rollout-
based approach, as shown in Figure 9.1. Here, we roll out complete trajectories of depth
k, and build the tree progressively from these rollouts. The method Evaluate(state) is
used to evaluate the last state in the rollout. This could be the reward of the state, or an
estimated value function (as in the chess example above). Another approach, which has
become common in games such as Go and Chess, is to simulate a game starting from state
s with a predetermined policy, until termination, and evaluate the state by the empirical
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return along the simulation trajectory. The method UpdateValue is used to build the
tree. It maintains both the sum of returns from a state action pair Qsum(s, a) (summing
over all trajectories that visited this state), and the number of visits to the state and

state-action pair, Ns and Nsa. The value of a state-action pair is the average Qsum(s,a)
Nsa

. To
understand why this approach could be beneficial, consider a state that is visited multiple
times. Thus, after several visits, we have some information about which actions are more
promising, and could use that to bias the rollout policy to focus on promising trajectories.
We need to make sure, however, that we also explore often enough, so that we do not miss
important actions by incorrect Q estimates in the beginning. The key to an efficient MCTS
algorithm, therefore, is in the selectAction method, which should balance exploration and
exploitation.

Figure 9.1: Generic Monte-Carlo Planning Algorithm (from[2])

The UCT algorithm of Kocsis and Szepesvari [2] selects actions that maximize Q(s, a)+
UCT (s, a), where the upper confidence bound is given by:

UCT (s, a) = C

√
logNs

Nsa
,

where C is some constant. Intuitively, UCT prefers actions that are either promising
(high Q) or under-explored (low Nsa). Later in the course we will show that this specific
formulation is actually optimal in some sense.

In many practical problems, UCT has been shown to be much more efficient than tree-
building methods. MCTS based on UCT is also the most prominent method for solving
games with high branching factors such as Go.
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9.3 Approximation methods in value space

1. Approximate policy iteration: approximate V µ; improve µ; repeat.

2. Approximate value iteration / Q-learning: Q̂(s, a) ≈ φ(s, a)>θ

3. Linear programming: not discussed.

Note that both V and Q are mappings from a state (or state-action) to R. When the
state space is large, we will not be able to calculate the value for every state, but instead,
fit some function to a few states values that we will calculate. This is similar to a regression
problem, which our development will be based on, but as we will see, we will also need
to account for the dynamic nature of the problem to develop approximate optimization
algorithms.

9.3.1 Approximate Policy Evaluation

We start with the simplest setting - approximating the value of a fixed policy. A direct
approach for this task is through regression, which we will now review.

Least Squares Regression

Assume we have some function y = f(x), and a distribution over a finite set of inputs ξ(x).
We want to fit a parametric function g(x; θ) to our data such that g approximates f . The
least squares approach solves the following problem:

min
θ

Ex∼ξ(g(x; θ)− f(x))2.

When g is linear in some features φ(x), i.e., g(x; θ) = θTφ(x), then we can write the above
equation in vector notation as

min
θ

(Φθ − Y )TΞ(Φθ − Y ),

where Y is a vector of f(x) for every x, and Φ is a matrix with φ(x) as its rows. The
solution is given by:

θLS = (ΦTΞΦ)−1ΦTΞY.

Note that ΦθLS denotes the approximated function g(x; θ). We will call this the projection
of y onto the space spanned by θTφ(x), and we can write the projection operator explicitly
as:

ΠεY = ΦθLS(Y ) = Φ(ΦTΞΦ)−1ΦTΞY.

In the non-linear case, a common approach is to solve the least squares problem by
gradient descent, i.e., θk+1 = θk−αk∇θEx∼ξ(g(x; θ)− f(x))2, where the gradient is simply
2Ex∼ξ(g(x; θ)− f(x))∇θg(x; θ).
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In a practical case, we are given N data samples {xi, yi} : xi ∼ ξ, yi = f(xi). The least
squares solution can be approximated from the samples as:

min
θ

∑
i

(g(xi; θ)− yi)2,

The stochastic gradient descent (SGD) version of this update is

θk+1 = θk − αk(g(xi; θk)− yi)∇θg(xi; θk).

For the linear case, we can solve directly:

θ̂LS = (Φ̂T Φ̂)−1Φ̂T Ŷ ,

where in this case the rows of Φ̂ and Ŷ are given by the N samples. By the law of
large numbers, we have that 1

N (Φ̂T Φ̂)→ (ΦTΞΦ) and 1
N Φ̂T Ŷ → ΦTΞY , thus the sampled

solution converges to the solution θLS above.

Approximate Policy Evaluation: Regression

The direct approach to policy evaluation: Evaluate V µ(s) only for several states (e.g. by
simulation) and interpolate, e.g., using least squares regression: Φθ = ΠV µ. This method
is simple, however, it has several drawbacks. The first is that value estimates typically
have a large variance, as they accumulate rewards from multiple states in the future. The
second is that we need to wait for full simulations to complete before updating the value
estimate. Practically, this can take too long in some problems.

We next describe an alternative approach, using the fact that the value function satisfies
Bellman’s equation.

Approximate Policy Evaluation: the Projected Bellman Equation

The indirect approach to policy evaluation is based on the projected Bellman equation
(PBE). Recall that V µ(s) satisfies the Bellman equation: V µ = TµV µ. We can evaluate
V µ(s) by projecting the Bellman operator Tµ onto S (the subspace spanned by Φ):

Φθ = ΠTµ{Φθ},

where Π is the projection operator onto S under some norm. Includes:

• Temporal differences - TD(0): online solution of the PBE.

• Least-squares policy evaluation - LSPE(0): simulation-based form

Φθk+1 = ΠTµ{Φθk}+ noise.

112



• Least-squares temporal differences - LSTD(0): batch solution of the PBE.

We now discuss the indirect approach to policy evaluation.
Define the weighted Euclidean inner product:

〈V1, V2〉ε =

√√√√ n∑
i=1

εiV1(i)V2(i), εi ≥ 0,

and the induced weighted Euclidean norm:

||V ||ε =

√√√√ n∑
i=1

εiV (i)2, εi ≥ 0,

and let Πε be the operator of projection onto S w.r.t. this norm:

ΠεV = argmin
V ′∈S

||V ′ − V ||ε =

= Φθ s.t. θ = argmin
θ′∈Rk

||Φθ′ − V ||ε.

We want to solve the projected Bellman equation (PBE):

Φθ∗ = ΠεT
µΦθ∗. (9.1)

The main reason to consider the approximation in (9.1) is that, as we shall see, it will allow
us to derive efficient sampling based algorithms with provable error guarantees.

9.3.2 Existence, Uniqueness and Error Bound on PBE Solution

We are interested in the following questions:

1. Does the PBE (9.1) have a solution?

2. When is ΠεT
µ a contraction, and what is its fixed point?

3. If ΠεT
µ has a fixed point θ∗, how far is it from ΠεV

µ?

Let us assume the following:

Assumption 9.1. The Markov chain corresponding to µ has a single recurrent class and
no transient states. We further let

εj = lim
N→∞

1

N

N∑
t=1

p(st = j|s0 = s) > 0,

which is the probability of being in state j when the process reaches its steady state, given
s0 = s.
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We have the following result:

Proposition 9.1. Under Assumption 9.1 we have that

1. ΠεT
µ is a contraction operator with modulus γ w.r.t. || · ||ε.

2. The unique fixed point Φθ∗ of ΠεT
µ satisfies

||V µ − Φθ∗||2ε ≤
1

1− γ2
||V µ −ΠεV

µ||2ε .

Proof. We begin by showing the contraction property. We use the following lemma:

Lemma 9.1. If Pµ is the transition matrix induced by µ, then

∀z ||Pµz||ε ≤ ||z||ε.

Proof. Proof: Let pij be the components of Pµ. For all z ∈ Rn:

||Pµz||2ε =
∑
i

εi

∑
j

pijzj

2

≤︸︷︷︸
Jensen

∑
i

εi
∑
j

pijz
2
j =

∑
j

z2
j

∑
i

εipij = ||z||2ε ,

where the last equality is since by definition of εi,
∑

i εipij = εj , and
∑n

j=1 εjz
2
j = ||z||2ε .

Since Πε is a projection with respect to a weighted Euclidean norm, it obeys the
Pythagorian theorem:

∀J ∈ R|S|, J̄ ∈ S : ||J − J̄ ||2ε = ||J −ΠεJ ||2ε + ||ΠεJ − J̄ ||2ε .

Proof:

||J − J̄ ||2ε = ||J −ΠεJ + ΠεJ − J̄ ||2ε = ||J −ΠεJ ||2ε + ||ΠεJ − J̄ ||2ε + 〈J −ΠεJ,ΠεJ − J̄〉ε,

and J − ΠεJ and ΠεJ − J̄ are orthogonal under 〈·, ·〉ε (error orthogonality for weighted
Euclidean-norm projections).

This implies that Πε is non-expansive:

||ΠεJ −ΠεJ̄ ||ε ≤ ||J − J̄ ||ε

Proof:

||ΠεJ −ΠεJ̄ ||2ε = ||Πε(J − J̄)||2ε ≤ ||Πε(J − J̄)||2ε + ||(I −Πε)(J − J̄)||2ε = ||J − J̄ ||2ε ,
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where the first inequality is by linearity of Πε, and the last is by the Pythagorian theorem
(with vectors J − J̄ and 0).

In order to prove the contraction:

||ΠεT
µJ −ΠεT

µJ̄ ||ε
Πε non-expansive

≤ ||TµJ − TµJ̄ ||ε
definition of Tµ

= γ||Pµ(J − J̄)||ε
Lemma 9.1
≤ γ||J − J̄ ||ε,

and therefore ΠεT
µ is a contraction operator.

Proof of the error bound:

||V µ − Φθ∗||2ε = ||V µ −ΠεV
µ||2ε + ||ΠεV

µ − Φθ∗||2ε
= ||V µ −ΠεV

µ||2ε + ||ΠεT
µV µ −ΠεT

µΦθ∗||2ε
≤ ||V µ −ΠεV

µ||2ε + γ2||V µ − Φθ∗||2ε ,
(9.2)

where the first equality is by the Pythagorean theorem, the second equality is since V µ is
Tµ’s fixed point, and Φθ∗ is ΠTµ’s fixed point, and the inequality is by the contraction of
ΠεT

µ.
Therefore

||V µ − Φθ∗||2ε ≤
1

1− γ2
||V µ −ΠεV

µ||2ε .

Remark 9.1. A weaker error bound of ||V µ−Φθ∗||ε ≤ 1
1−γ ||V

µ−ΠεV
µ||ε may be obtained

by the following argument:

||V µ − Φθ∗||ε ≤ ||V µ −ΠεV
µ||ε + ||ΠεV

µ − Φθ∗||ε
= ||V µ −ΠεV

µ||ε + ||ΠεT
µV µ −ΠεT

µΦθ∗||ε
≤ ||V µ −ΠεV

µ||ε + γ||V µ − Φθ∗||ε,
(9.3)

where the first inequality is by the triangle inequality.

Remark 9.2. The error bounds in this section are in the ‖·‖ε norm, while the approximate
policy iteration error bounds of Theorem 9.1 are in the ‖ · ‖∞ norm. In general, for large
or continuous state spaces, an ‖ · ‖ε norm error bound does not provide a strong guarantee
on the error in the ‖ · ‖∞ norm, and the results of Theorem 9.1 therefore do not apply. A
result similar to that of Theorem 9.1 may be shown to hold in the ‖ · ‖ε norm, however this
is much more complicated, and beyond the scope of this course.
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Remark 9.3. At this point, the reader should wonder why the PBE solution is sought
instead of ΠεV

µ. In fact, an algorithm for estimating ΠεV
µ can easily be derived using

regression. For example, consider an algorithm that samples states s1, . . . , sN ∼ ε, and
from each state si runs a trajectory in the MDP following policy µ. Let yi denote the
discounted return in that trajectory. Then, a least squares fit:

min
θ

1

2

N∑
i=1

(
yi − φ(si)

>θ
)2

would converge to ΠεV
µ as N → ∞. However, such an algorithm would suffer a high

variance, since the discounted return in the whole trajectory often has a high variance.
The PBE approach typically has lower variance, since it only considers 1-step transitions
instead of complete trajectories. However, it may have a bias, as seen by the error bound
in Proposition 9.1. We thus have a bias-variance tradeoff between the direct and indirect
approaches to policy evaluation.

9.3.3 Solving the PBE

We now move to solving the projected Bellman equation.
We would like to find J = Φθ∗ where θ∗ solves

θ∗ = argmin
θ∈Rk

||Φθ − (Rµ + γPµΦθ∗)||2ε

Setting the gradient of the to 0, we get

ΦTΞ(Φθ∗ − (Rµ + γPµΦθ∗)) = 0

where Ξ = diag (ε1, ..., εn).
This is in fact the orthogonality condition from random signals.
Equivalently we can write

Cθ∗ = d

where
C = ΦTΞ(I − γPµ)Φ, d = ΦTΞRµ

Solution approaches:

1. Matrix inversion (LSTD):
θ∗ = C−1d

In order to evaluate C, d, calculate a simulation-based approximation Ĉk, d̂k → C, d
by the LLN, and then use θ̂k = Ĉ−1

k d̂k – this is the Least Squares Temporal Difference
algorithm (LSTD). Note that the simulation must use the policy µ, such that (after
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some burn-in time) the states are samples from the distribution ε.
Recall that

d = ΦTΞRµ =

|S|∑
s=1

εsφ(s)Rµ(s).

So the following estimate converges to d:

d̂n =
1

n

n∑
t=1

φ(st)r(st, µ(st)) =

=
1

n

n∑
t=1

|S|∑
s=1

1(st = s)φ(s)Rµ(s) −→
n→∞

d.

Similarly,

Ĉn =
1

n

n∑
t=1

φ(st)(I − γPµ)φT (st) ≈

1

n

n∑
t=1

φ(st)(φ
T (st)− γφT (st+1)) −→

n→∞
C.

2. Projected value iteration:

Φθn+1 = ΠεT
µΦθn = Πε(R

µ + γPµΦθn),

which converges to θ∗ since ΠεT
µ is a contraction operator.

The projection step is

θn+1 = argmin
θ
||Φθ − (Rµ + γPµΦθn)||2ε .

Setting the gradient to 0 w.r.t. θ:

ΦTΞ(Φθn+1 − (Rµ + γPµΦθn)) = 0

⇒ θn+1 = θn − (ΦTΞΦ)−1(Cθn − d).

So we can approximate
θn+1 = θn −Gn(Cnθn − dn),

where

G−1
n ≈

1

n+ 1

n∑
t=0

φ(st)φ(st)
T ⇒ Gn ≈ (ΦTΞΦ)−1.
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We observe that Cn, dn, Gn can also be computed via the SA algorithm.

More generally, for the non-linear case, we have the iterative algorithm:

V̂ (θn+1) = ΠTµV̂ (θn),

where the projection Π here denotes a non-linear least squares fit, or even a non-
parametric regression such as K-nearest neighbors. Convergence in this case is not
guaranteed.

3. Stochastic approximation – TD(0): Consider the function-approximation vari-
ant of the TD(0) algorithm (cf. Section 6.4.1)

θn+1 = θn + αn (r(sn, µ(sn)) + φ(sn+1)>θn − φ(sn)>θn)︸ ︷︷ ︸
temporal difference

φ(sn),

where the temporal difference term is the approximation (w.r.t. the weights at time
n) of r(sn, µ(sn)) + V (sn+1)− V (sn).
This algorithm can be written as a stochastic approximation:

θn+1 = θn + αn(Cθn − d+mn),

where mt is a noise term, and the corresponding ODE is θ̇ = Cθ − d, with a unique
stable fixed point at θ∗ = C−1d. More details will be given in the tutorial.

Remark 9.4. For a general (not necessarily linear) function approximation, the TD(0)
algorithm takes the form:

θn+1 = θn + αn (r(sn, µ(sn)) + f(sn+1, θn)− f(sn, θn))∇θf(s, θ).

It can be derived as a stochastic gradient descent algorithm for the loss function

Loss(θ) = ||f(s, θ)− V µ(s)||ε,

and replacing the unknown V µ(s) with a Bellman-type estimator r(s, µ(s)) + f(s′, θ).

9.3.4 Approximate Policy Iteration

The algorithm: iterate between projection of V µk onto S and policy improvement via
a greedy policy update w.r.t. the projected V µk .

Guess
µ0

evaluate:
Ṽk = Φθk ≈ V µk

improve:
µk+1
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The key question in approximate policy iteration, is how errors in the value-function
approximation, and possibly also errors in the greedy policy update, affect the error in
the final policy. The next result shows that if we can guarantee that the value-function
approximation error is bounded at each step of the algorithm, then the error in the final
policy will also be bounded. This result suggests that approximate policy iteration is a
fundamentally sound idea.

Theorem 9.1. If for each iteration k the policies are approximated well over S:

max
s
|Ṽ (s; θk)− V µk(s)| ≤ δ,

and policy improvement approximates well

max
s
|Tµk+1 Ṽ (s; θk)− T Ṽ (s; θk)| < ε,

Then

lim sup
k

max
s
|V µk(s)− V ∗(s)| ≤ ε+ 2γδ

(1− γ)2
.

Online - SARSA

As we have seen earlier, it is easier to define a policy improvement step using the Q function.
We can easily modify the TD(0) algorithm above to learn Q̂µ(s, a) = f(s, a; θ):

θn+1 = θn + αn (r(sn, an) + f(sn+1, an+1; θn)− f(sn, an; θn))∇θf(s, a, θ).

The actions are typically selected according to an ε−greedy or softmax rule. Thus, policy
evaluation is interleaved with policy improvement.

Batch - Least Squares Policy Iteration (LSPI)

One can also derive an approximate PI algorithm that works on a batch of data. Consider
the linear case Q̂µ(s, a) = θTφ(s, a). The idea is to use LSTD(0) to iteratively fit Q̂µk ,
where µk is the greedy policy w.r.t. Q̂µk−1 .

d̂kn =
1

n

n∑
t=1

φ(st, at)r(st, at)

Ĉkn =
1

n

n∑
t=1

φ(st, at)(φ
T (st, at)− γφT (st+1, a

∗
t+1)),

θk = (Ĉkn)−1d̂kn.

where a∗t+1 = arg maxa Q̂
µk−1(st+1, a) = arg maxa θ

T
k−1φ(st+1, a).
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9.3.5 Approximate Value Iteration

Approximate VI algorithms directly approximate the optimal value function (or optimal
Q function). Let us first consider the linear case. The idea in approximate VI is similar to
the PBE, but replacing Tµ with T . That is, we seek solutions to the following projected
equation:

Φθ = ΠT{Φθ},

where Π is some projection. Recall that T is a contraction in the ‖.‖∞ norm. Unfortunately,
Π is not necessarily a contraction in ‖.‖∞ for general function approximation.1 Similarly,
T is not a contraction in the ‖.‖ε norm. Thus, we have no guarantee that the projected
equation has a solution. Nevertheless, algorithms based on this approach have achieved
impressive success in practice.

For the non-linear case, we have:

Q̂(θn+1) = ΠTQ̂(θn).

Online - Q learning

The function approximation version of online Q-learning resembles SARSA, only with an
additional maximization over the next action:

θn+1 = θn + αn

(
r(sn, an) + max

a
f(sn+1, a; θn)− f(sn, an; θn)

)
∇θf(s, a, θ).

The actions are typically selected according to an ε−greedy or softmax rule, to balance
exploration and exploitation.

Batch – Fitted Q

In this approach, we iteratively project (fit) the Q function based on the projected equation:

Q̂(θn+1) = ΠTQ̂(θn).

Assume we have a data set of samples {si, ai, s′i, ri},obtained from some data colletion
policy. Then, the right hand side of the equation denotes a regression problem where the
samples are: X = {si, ai} and Y = {ri + γmaxa Q̂(s′i, a; θn)}. Thus, by solving a sequence
of regression problems we approximate a solution to the projected equation.

Note that approximate VI algorithms are off-policy algorithms. Thus, in both Q-
learning and fitted-Q, the policy that explores the MDP can be arbitrary (assuming of
course it explores ‘enough’ interesting states).

1A restricted class of function approximators for which contraction does hold is called averagers, as was
proposed in [3].
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9.4 Exercises

Exercise 9.1 (Computational Complexity). What is the computational complexity
(per-iteration, in terms of k – the number of features) of LSTD and TD(0)? Suggest an
improvement to the matrix-inversion step of LSTD to reduce the computational complexity
(hint: use the Sherman Morrison formula).

Exercise 9.2 (Projected Bellman Operator). Consider the projection operator Π
that projects a vector V ∈ Rn to a linear subspace S that is the span of k features
φ1(s), . . . , φk(s) w.r.t. the ε-weighted Euclidean norm. Also recall the Bellman operator
for a fixed policy T π(v)

.
= r + γP πv.

1. Show that for a vector v ∈ S, the vector v′ = T πv is not necessarily in S. Choose an
appropriate MDP and features to show this.

In class we have seen that ΠT π is a contraction w.r.t. the ε-weighted Euclidean norm,
when ε is the stationary distribution of P π. We will now show that when ε is chosen
differently, ΠT π is not necessarily a contraction.

Consider the following 3-state MDP with zero rewards:

We consider a value function approximation Ṽ (s) = φ1(s)w1 +φ2(s)w2, given explicitly
as Ṽ = (w1, w2, 2w2)>, and we let w = (w1, w2)> denote the weight vector.

2. What are the features φ(s) in this representation?

3. Write down the Bellman operator T π explicitly. Write downT πṼ .

4. What is the stationary distribution?

121



5. Write down the projection operator Π explicitly, for ε =
(

1
2 ,

1
4 ,

1
4

)
.

6. Write an explicit expression for Ṽ ′
.
= ΠT πṼ in terms of w: the weight vector of Ṽ .

Let w′ = (w1
′, w2

′)> denote the weights of Ṽ ′. Write w′ as a function of w .

7. Show that iteratively applying ΠT πto Ṽ may diverge for certain values of p.

Exercise 9.3 (SARSA with function approximation). In this question we will im-
plement a reinforcement learning algorithm in a continuous domain using function approx-
imation.

Recall the tabular SARSA algorithm (Section 6.4.5). We now present an extension of
SARSA to the function approximation setting. Assume that we are given a set of state-
action features φ(s, a) ∈ Rk. We propose to approximate Qπ(s, a) as a linear combination
of these features:

Q̃π(s, a) =

k∑
i=1

φi(s, a)wi ≡ φ(s, a)>w.

Our goal is to find the weight vector w ∈ Rk.
In the SARSA algorithm, at each stage we observe (st, at, rt, st+1, at+1), simulated on-

policy (i.e., by simulating the policy π) and update w by

w : = w + βtδtφ(st, at)

δt
∆
= r(st) + γφ(st+1, at+1)>w − φ(st, at)

>w

where βt is a suitable step-size, and γ is the discount factor.

1. Explain the intuition for this update. You may use the TD(0) algorithm learned in
class.

Policy improvement in SARSA is achieved by choosing the policy π as the ε-greedy
policy with respect to the current w, that is, at time t the state is xt and the action at is
selected according to

at =

{
random w.p. ε

arg maxa

(
φ(st, a)>w

)
w.p. 1− ε .

2. Explain why the SARSA algorithm is expected to gradually improve performance.

We will now implement SARSA on a popular RL benchmark - the mountain car.
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In the Mountain Car problem (see figure), an under-powered car must drive up a steep
hill. Since gravity is stronger than the car’s engine, even at full throttle, the car cannot
simply accelerate up the steep slope. The car is situated in a valley and must learn to
leverage potential energy by first driving up the left hill before gaining enough momentum
to make it to the goal at the top of the right hill.

The state space is two-dimensional, and consists of the position p ∈ [−1.2, 0.6] and
velocity v ∈ [−0.07, 0.07]. There are 3 actions: a = −1 (accelerate left), a = 0 (don’t
accelerate), and a = 1 (accelerate right).

The simulation runs in episodes. At the beginning of an episode the initial state is
p0 ∼ Uniform [−0.5, 0.2], v0 ∼ Uniform [−0.02, 0.02]. If the car reaches the right hilltop:
p > 0.5, the episode ends, and a reward r = 5 is received. At every other step the reward
is r = −1. The maximum episode length is 500 steps.

The Matlab function mountainCarSim(p, v, u) (available at the course webpage)
takes the current state and action and returns the next state of the car.

As function approximation, we will use grid-tiles. For each action a, we discretize the
state space into n non-overlapping tiles of size ∆p = 0.1,∆v = 0.01 (see figure), and we
label the tiles ψa1 , . . . , ψ

a
n.
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Define binary state-features φ(s) ∈ Rn by:

φi(s) =

{
1 s ∈ ψi
0 else

,

and binary state-action-features φ(s, a) ∈ Rk where k = 3n, by:

φ(s,−1) = {φ(s), 2n zeros}
φ(s, 0) = {n zeros, φ(s), n zeros}
φ(s, 1) = {2n zeros, φ(s)}

.

3. Run the SARSA algorithm in this domain. Generate the following plots, and write
a proper explanation for each plot.

(a) Total reward (in episode) vs. episode

(b) Goal was reached / not reached vs. episode

(c) L2 Norm of the weights w vs. episode

(d) Trajectory of car (p vs. time) for the greedy policy starting from (0, 0), every
100 episodes of learning.

(e) Final value function and policy after learning.

You may use the following learning parameters for the algorithm:

• Step size: βt = 100
1000+episodecount

• Exploration: ε = 0.1

• Discount: γ = 0.95

• Total number of learning episodes: 500− 1000

• Initial weights: zeros.

Bonus: Improve the learning algorithm using either:

• Different features - you may try:

– Overlapping tiles (sometime called CMACs) (http://webdocs.cs.ualberta.
ca/~sutton/book/ebook/node88.html#SECTION04232000000000000000)

– Radial Basis Functions (http://en.wikipedia.org/wiki/Radial_basis_function)

– Fourier / polynomials (http://irl.cs.duke.edu/fb.php)

• Different algorithm - you may try:
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– SARSA(λ) e.g., http://webdocs.cs.ualberta.ca/~sutton/book/ebook/node89.
html

– Q(λ) e.g., http://webdocs.cs.ualberta.ca/~sutton/book/ebook/node89.html

• Any other idea that you like

Evidence that your method improves performance in some sense (learning rate/ final per-
formance/ robustness to parameter changes/ etc.) will be rewarded with bonus points.
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Chapter 10

Policy Gradient Methods

Recall that Reinforcement Learning is concerned with learning optimal control policies by
interacting with the environment. So far, we have focused on learning methods that rely on
learning the value function, from which the optimal policy can be inferred. Policy gradient
methods take a different approach. Here a set of policies is directly parameterized by a
continuous set of parameters, which are then optimized online. The basic algorithms use
online gradient descent, hence achieve only local optimality in the parameter space. This
also means that the set of possible policies is restricted, and might require a fair amount of
prior knowledge for its effective definition. On the other hand, the restriction to a given set
of policies simplifies the treatment of various aspects of the RL problem such as large or
continuous state and action spaces. For these reasons, policy gradient methods are finding
many applications in the area of robot learning. Policy Gradient algorithms belong to a
larger class of Policy Search algorithms. An extensive survey can be found in:

• M. Deisenroth, G. Neumann and J. Peters, ”A Survey on Policy Search for Robotics,”
Foundations and Trends in Robotics, Vol. 2, 2011, pp. 1-142.

10.1 Problem Description

We consider the standard MDP model in discrete time, with states xt ∈ X, actions ut ∈ U ,
transition kernel {p(x′|x, u)} , rewards Rt = rt(xt, ut), and policies π ∈ Π.

For concreteness, we consider an episodic (finite horizon) problem with the total return
criterion, which is to be maximized:

Jπ = Eπ,x0(

T∑
t=0

Rt ).

Here x0 is a given initial state. We may allow the final time T to depend on the state (as
in the Stochastic Shortest Path problem), as long as it is bounded.
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We next assume that we are given parameterized set of policies: {πθ, θ ∈ Θ}, where θ is
an I-dimensional parameter vector. We also refer to this set as a policy representation. The
representation is often application-specific and should take into account prior knowledge
on the problem.

We assume the following:

• The actions set U is continuous - typically a subset of Rl. If the original action set
is finite, we extend it to a continuous set by considering random (mixed) actions.

• The parameter set Θ is a continuous subset of RI .

• The policy set {πθ, θ ∈ Θ} is smooth in θ. In particular, assuming each πθ is a
stationary policy, πθ(s) is a continuous function of θ for each state s.

Policy representation: Some common generic representations include:

• Linear policies:
u = πθ(x) = θTφ(x),

where φ(x) is a suitable set of basis functions (or feature vectors).

• Radial Basis Function Networks:

πθ(x) = wTφ(x), with φi(x) = exp(−1
2(x− µi)TDi(x− µi)),

where Di is typically a diagonal matrix. The vector θ of tunable parameters includes
w (the linear parameters), and possibly (µi) and (Di) (nonlinear parameters).

• Neural Networks. For example, a Multi-Layer Perceptron (MLP):

πθ(x) = ψ(b2 + wT2 ψ(b1 + wT1 φ(x))),

where ψ is a non-linear activation function (e.g., tanh or sigmoid) and the vector θ
includes the weight and the bias terms (w1, w2, b1, b2) in the neural network. This
can be seen as a generalization of the linear policy to include non-linearities.

• Logistic (a.k.a. softmax) functions: For a discrete (finite) action space, one can use
the Boltzman-like probabilities

πθ(u|x) = exp(wTu φ(x))/
∑

u′
exp(wTu′φ(x)),

where θ = (wu)u∈U . It is convenient to designate one of the actions as ’anchor’, with
wu = 0.
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• Stochastic policies: in certain cases a stochastic policy is required for sufficient ex-
ploration of the system. This is typically modelled by adding noise to a deterministic
policy. For example, in a linear policy with Gaussian noise:

P (u|x) = πθ(u|x) ∼ N
(
wTφ(x), σ

)
,

where the parameter vector θ contains w and the covariance matrix σ.

In robotics, a parameterized path is often described through a parameterized dynamical
system, the output of which is used as a reference input to a feedback controller.

Gradient Updates: Plugging in the parameter-dependent policy πθ in Jπ, we obtain
the parameter-dependent return function:

J(θ) = Jπθ .

We wish to find a parameter θ that maximizes J(θ), at least locally. We discuss two
high-level approaches for this task.

10.2 Search in Parameter Space

In this approach, the problem is viewed as a black-box optimization of the function J(θ).
Black-box optimization (a.k.a. derivative free optimization) refers to optimization of an
objective function through a black-box interface: the algorithm may only query the function
J(θ) for a point θ; gradient information or the explicit form of J(θ) are not known.

In our setting, for each given value of the parameter vector θ, we can simulate or operate
the system with control policy πθ and measure the return Ĵ(θ) =

∑T
t=0Rt, which gives a

estimate of the expected return J(θ). We note that for stochastic systems or policies, this
estimate will be noisy.

Note: The search in parameter space approach ignores the structure of our problem,
namely, that trajectories are the result of rolling out a policy in an MDP. Only the mapping
between θ and the resulting cumulative reward is considered.

Many black-box optimization algorithms have been proposed in the literature. We
describe several that have been popular in RL literature.

10.2.1 Gradient Approximation

These methods use function evaluations of J(θ) to approximate the gradient∇θJ(θ). Given
the gradient, we may consider a gradient ascent scheme, of the form

θk+1 = θk + αk∇θJ(θk). (10.1)

128



Here (αk) is the gain (or learning rate) sequence, and

∇θJ(θ) =
∂J(θ)

∂θ

is the gradient of the return function with respect to θ.
It remains of course to determine how to compute the required gradient. We next

outline two options.
Note: Whenever required, we assume without further mention that J(θ) is continuously

differentiable, and that the expectation and derivative in its definition can be interchanged.

Finite Difference Methods

Finite difference methods are among the most common and straightforward methods for
estimating the gradient in a variety of applications.

Suppose that, for each given value of the parameter vector θ, we can simulate or operate
the system with control policy πθ and measure the return Ĵ(θ) =

∑T
t=0Rt, which gives a

estimate of the expected return J(θ). We note that this estimate will be noisy when either
the policy or the system contain random moves.

Component-wise gradient estimates: We can now obtain a noisy estimate of each
component of the gradient vector using a finite difference of the form:

∂J(θ)

∂θi
≈ Ĵ(θ + δei)− Ĵ(θ)

δ
,

or, preferably, the symmetric difference

∂J(θ)

∂θi
≈ Ĵ(θ + δei)− Ĵ(θ − δei)

2δ
.

Note:

• Since the estimates Ĵ are typically noisy, repeated trials and averaging of several such
differences are needed to reduce the estimation error. However, one can also use the
noisy estimates with a low gain in the gradient ascent scheme, which has a similar
averaging effect.

• The choice of the step size δ is crucial, as it controls the tradeoff between the relative
noise level and the non-linearity of J(θ). We will not get into this issue here.

• A useful method to reduce the variance of the above difference is to use coupled ran-
dom simulation, meaning that the random variables that govern the random choices
in the simulation (or action choices) are drawn only once, and used for both estimates
Ĵ(θ+ δei) and Ĵ(θ− δei). These and other variance reduction methods are standard
tools in the area of Monte-Carlo simulation.
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Least-squared gradient estimates: Suppose we simulates/operate the system with a
set of parameters θ[k] = θ + ∆θ[k], 1 ≤ k ≤ K, to obtain a corresponding set of reward
estimates Ĵ [k] = Ĵ(θ + ∆θ[k]).

We can now use the linear relations

Ĵ(θ + ∆θ[k]) ≈ J(θ) + ∆θ[k] · ∇J(θ) (10.2)

to obtain a least-squares estimate of ∇J(θ). For example, if an estimate Ĵ(θ) is pre-
computed, the relation

∆J [k] ∆
= Ĵ(θ + ∆θ[k])− Ĵ(θ) ≈ ∆θ[k] · ∇J(θ)

leads to the LS estimate

∇̂J(θ) = (∆ΘT∆Θ)−1∆ΘT∆J,

where ∆Θ = [∆θ[1], . . . ,∆θ[K]]T , and ∆J = [∆J [1], . . . ,∆J [K]]T . (Note that we consider
here ∆θ[k] as a column vector, so that ∆Θ is a K × I matrix).

If Ĵ(θ) is not given in advance, we can use directly the relations from (10.2) in matrix
form,

Ĵ
∆
=

 Ĵ [1]

...

Ĵ [K]

 ≈M [
J(θ)
∇J(θ)

]
, M = [1,∆Θ]

to obtain the joint estimate (MTM)−1M Ĵ for J(θ) and ∇J(θ).

10.3 Population Based Methods

This family of methods maintain a distribution over the parameter vector θ, and use
function evaluations to ‘narrow in’ the distribution on an optimal choice. Assume that we
have a parametrized distribution over the policy parameters Pφ(θ). Note the distinction
between the policy parameters θ and the parameters φ for the distribution of θ values.

For example, Pφ(θ) can be a multivariate Gaussian, where φ encodes the mean and
covariance of the Gaussian.

Cross Entropy Method (CEM) This method updates φ iteratively according to the
following scheme:

1. Given current parameter φi, sample N population members

θk ∼ Pφi(θ), k = 1, . . . , N.

2. For each k, simulate the system with πθk and measure the return J(θk).
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3. Let K∗ denote a set of the p% top performing parameters

4. Improve the parameter:

φi+1 = arg max
φ

∑
k∈K∗

logPφ(θk). (?)

The intuition here is that by refitting the distribution Pφ to the top performing parameters
in the population, we are iteratively improving the distribution.

Note that other forms of the improvement step (?) have been proposed in the literature.
For example, in Reward Weighted Regression (RWR) the parameters are updated according
to

φi+1 = arg max
φ

∑
k∈1,...,N

J(θk) logPφ(θk).

10.4 Likelihood Ratio Methods

Likelihood ratio-based methods allow to obtain a (noisy) estimate of the reward gradient
from a single trial. The approach is again standard in the Monte-Carlo simulation area,
where it is also known as the Score Function methods. Its first use in the controlled
process (or RL) context is known as the REINFORCE algorithm. Interestingly, the RL
formulation of this method can exploit the MDP structure of the problem, by using dynamic
programming ideas to reduce variance in the estimation.

Let τ = (x0, u0, . . . , xT ) denote the process history, or sample path, of a single run of
our episodic problem. For simplicity we consider here a discrete model (finite state and
action sets). Let pθ(τ) denote the probability mass function induced on the process by the
policy πθ. That is, assuming πθ is a Markov policy,

pθ(τ) = p(x0)
T−1∏
t=0

πθ(ut|xt)p(xt+1|xt, ut).

Denote R(τ) =
∑T−1

t=0 r(xt, ut) + rT (xT ), so that

J(θ) = Eθ(R(τ)) =
∑

τ
R(τ)pθ(τ) .

Observe now that∇θpθ(τ) = pθ(τ)∇θ log pθ(τ). Therefore, assuming that the expectation
and derivative can be interchanged,

∇J(θ) =
∑

τ
R(τ)∇θpθ(τ)

=
∑

τ
[R(τ)∇θ log pθ(τ)] pθ(τ)

= Eθ (R(τ)∇θ log pθ(τ)) .
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Furthermore, observing the above expression for pθ(τ),

∇θ log pθ(τ) =

T−1∑
t=0

∇θ log πθ(ut|xt).

Importantly, the latter expression depends only on the derivative of the control policy,
which is known to us, and not on the (unknown) process dynamics and reward function.

We can now obtain an unbiased estimate of ∇J(θ) as follows:

• Simulate/implement a single episode (”rollout”) of the controlled system with policy
πθ.

• Compute R(τ) as R(τ) =
∑T−1

t=0 r(xt, ut) + rT (xT ), or directly using the observed

rewards R(τ)
∆
=
∑T

t=0Rt.

• Compute ∇̂J(θ) = R(τ)
T−1∑
t=0
∇θ log πθ(ut|xt) This is typically a noisy estimate, which

can of course be improved by averaging over repeated trials.

Illustrative Example

Consider the bandit setting, where the MDP has only a single state and the horizon is
T = 1. The policy and reward are given as follows:

r(u) = u,

πθ(u) =
1√

2πσ2
exp(−(u− θ)2

2σ2
).

We have that J(θ) = E[u] = θ, and thus ∇θJ(θ) = 1. Using the policy gradient formula,
we calculate:

∇θ log πθ(u) =
u− θ
σ2

,

∇θJ(θ) = E[
u(u− θ)
σ2

]

=
1

σ2
(E[u2]− (E[u])2) = 1.

Note the intuitive interpretation of the policy gradient here: we average the change to the
mean action u − θ and the reward it produces r(u) = u. In this case, actions above the
mean lead to higher reward, thereby ‘pushing’ the mean action θ to increase. Also note
the relation to the reward-weighted regression expression above.
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10.4.1 Variance Reduction

We now provide a generalization of the policy gradient. We will consider an episodic MDP
setting, and assume that for every policy parameter θ, an absorbing state is reached w.p. 1.

We can therefore replace the finite horizon return with an infinite sum Jπ = Eπ,x0(
∞∑
t=0

Rt ).

We also recall the value and action value functions V π(x) and Qπ(x, u).

Proposition 10.1. The policy gradient can be written as:

∇θJ(θ) = Eθ
( ∞∑
t=0

Ψt∇θ log πθ(ut|xt)

)
,

where Ψt can be either one of the following terms:

1. Total reward,
∑∞

t=0 r(xt, ut)− b(xt), where b is a state-dependent baseline

2. Future reward following action ut,
∑∞

t′=t r(xt, ut)− b(xt)

3. State-action value function, Qπ(xt, ut)

4. Advantage function, Qπ(xt, ut)− V π(xt)

5. Temporal difference, r(xt, ut) + V π(xt+1)− V π(xt)

All the above formulations are unbiased estimates of the policy gradient. However,
they differ in their variance, and variance reduction plays an important role in practical
applications1. Let illustrate this in the previous bandit example.

Illustrative Example (cont’d)

Consider the previous bandit setting, where we recall that r(u) = u, πθ(u) = 1√
2πσ2

exp(− (u−θ)2
2σ2 ).

Find a fixed baseline b that minimizes the variance of the policy gradient estimate.
The policy gradient formula in this case is:

∇θJ(θ) = E[
(u− b)(u− θ)

σ2
] = 1,

and we can calculate the variance
1

σ4
Var [(u− b)(u− θ)] =

1

σ4
E
[
((u− b)(u− θ))2 − 1

]
=

1

σ4
E
[
((u− θ)(u− θ) + (θ − b)(u− θ))2 − 1

]
=

1

σ4
E
[
(u− θ)4 + (θ − b)(u− θ)3 + (θ − b)2(u− θ)2 − 1

]
=

1

σ4
E
[
(u− θ)4 + (θ − b)2(u− θ)2 − 1

]
,

1In the simulation literature, the technique of changing the variance of the estimate by adding terms
that do not change its bias is known as control variates.
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which is minimized for b = θ.
Note 1: The average reward, state-action value function, and advantage function

baselines are commonly used in practice. While in our illustrative example the average
reward was optimal, in general it is not necessarily so. An in-depth discussion of this topic
can be found in:

• Greensmith, E., Bartlett, P.L. and Baxter, J., 2004. Variance reduction techniques for
gradient estimates in reinforcement learning. Journal of Machine Learning Research,
5(Nov), pp.1471-1530.

Nevertheless, these baselines often lead to significant performance gains in practice.
Note 2: Typically, the value functions V π and Qπ will not be known, and will have to

be estimated along with the policy gradient using TD methods or regression. An important
question here is how the error in value function estimation affects the policy gradient bias.
There exist special policy classes and function approximators that are said to be compatible,
where the value estimation error is orthogonal to the policy gradient bias. In general,
however, this is not the case.

Proof of Proposition 10.1

Proof. We will start by establishing a useful property. Let pθ(z) be some parametrized
distribution. Differentiating

∑
z pθ(z) = 1 yields∑

z
(∇ log pθ(z))pθ(z) = Eθ(∇ log pθ(z)) = 0. (10.3)

We can now observe that adding a state-dependent baseline to the policy gradient does
not add bias:

Eθ
( ∞∑
t=0

b(xt)∇θ log πθ(ut|xt)

)
=
∞∑
t=0

Eθ [b(xt)∇θ log πθ(ut|xt)]

=

∞∑
t=0

Eθ
[
Eθ [b(xt)∇θ log πθ(ut|xt)|xt]

]
=
∞∑
t=0

Eθ
[
b(xt)Eθ [∇θ log πθ(ut|xt)|xt]

]
= 0,

where the last equation follows from applying (10.3) to the inner expectation. Note that
the justification for exchanging the expectation and infinite sum in the first equality is not
straightforward. In this case it can be shown to hold by the Fubini theorem, using the
assumption that every trajectory reaches a terminal state in a bounded time w.p. 1.
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We continue to show the independence on past rewards. We have that

Eθ
[ ∞∑
t=0

t−1∑
t′=0

r(xt′ , ut′)∇θ log πθ(ut|xt)

]

=

∞∑
t=0

Eθ
[
t−1∑
t′=0

r(xt′ , ut′)∇θ log πθ(ut|xt)

]

=

∞∑
t=0

Eθ
[
Eθ
[
t−1∑
t′=0

r(xt′ , ut′)∇θ log πθ(ut|xt)

∣∣∣∣∣x0, u0, . . . , xt

]]

=

∞∑
t=0

Eθ
[
t−1∑
t′=0

r(xt′ , ut′)Eθ [∇θ log πθ(ut|xt)|x0, u0, . . . , xt]

]

=

∞∑
t=0

Eθ
[
t−1∑
t′=0

r(xt′ , ut′)Eθ [∇θ log πθ(ut|xt)|xt]

]
= 0,

where in the second to last equality we used the Markov property, and in the last equality
we again applied (10.3). We have thus proved (1) and (2).

Exercise 1: where would this derivation fail for future rewards?
We continue to prove (3).

Eθ
[ ∞∑
t=0

∞∑
t′=t

r(xt′ , ut′)∇θ log πθ(ut|xt)

]
∞∑
t=0

Eθ
[ ∞∑
t′=t

r(xt′ , ut′)∇θ log πθ(ut|xt)

]
∞∑
t=0

Eθ
[
Eθ
[ ∞∑
t′=t

r(xt′ , ut′)∇θ log πθ(ut|xt)

∣∣∣∣∣xt, ut
]]

∞∑
t=0

Eθ
[
∇θ log πθ(ut|xt)Eθ

[ ∞∑
t′=t

r(xt′ , ut′)

∣∣∣∣∣xt, ut
]]

∞∑
t=0

Eθ [∇θ log πθ(ut|xt)Qπ(xt, ut)] .

Exercise 2: Prove (4) and (5).
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10.4.2 Natural Policy Gradient

In the gradient ascent scheme (10.1), the idea is to take small steps that iteratively improve
the policy. The question is, what is the best metric to define ‘small steps’ in? Taking a
step η in the gradient direction is equivalent to solving the following optimization problem:

arg max
∆θ

∆θ>∇J(θ),

s.t. ∆θ>∆θ ≤ η.
(10.4)

Thus, standard gradient ascent takes a small improvement step w.r.t. a Euclidean dis-
tance in the parameter space. However, this scheme can be highly sensitive to the specific
parametrization employed - it might be that a small change in parameters causes a very
drastic change to the behavior of the policy. The natural gradient attempts to rectify this
situation by replacing the Euclidean distance between two parameters θ and θ + ∆θ by
the Kullback-Leibler distance2 between the probability distributions pθ(τ) and pθ+∆θ(τ)
induced by these parameters. Using a Taylor expansion, the KL distance can be approxi-
mated as

DKL(pθ(τ)||pθ+∆θ(τ)) ≈ ∆θ>Fθ∆θ,

where Fθ is the Fisher Information Matrix, Fθ =
∑

τ pθ(τ)∇ log pθ(τ)∇ log pθ(τ)>.
Replacing the constraint in (10.4) with ∆θ>Fθ∆θ ≤ η leads to a modified gradient

definition known as the Natural Gradient: :

∇NJ(θ) = F−1
θ ∇J(θ).

Note that the Fisher Information Matrix can be calculated by sampling, since log pθ(τ) only
requires knowing the policy (as in the policy gradient derivation above). Natural policy
gradient schemes lead in general to faster and more robust convergence to the optimal
policy.

2The KullbackLeibler (KL) distance between two distributions P,Q is defined as DKL(P ||Q) =∑
x P (x) log P (x)

Q(x)
. It is a standard tool in information theory.
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[2] L. Kocsis and C. Szepesvári, “Bandit based monte-carlo planning,” in European con-
ference on machine learning, pp. 282–293, Springer, 2006.

[3] G. J. Gordon, “Stable function approximation in dynamic programming,” in Machine
Learning Proceedings 1995, pp. 261–268, Elsevier, 1995.

137


