Class Tutorial 1

Short review on DP - WikipediaDP

1. Rod Cutting (Knapsack variant)
(From Introduction to Algorithms)

A company buys long steel rods and cuts them into shorter rods. The price table for the shorter rods is as follows:

<table>
<thead>
<tr>
<th>Length n</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price p_n</td>
<td>1</td>
<td>5</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>17</td>
<td>17</td>
<td>20</td>
<td>24</td>
<td>30</td>
</tr>
</tbody>
</table>

The cost of making a cut is zero. Given a (long) rod of length \(n \), the problem is how to cut it in order to maximize the revenue \(r_n \).

Example: \(n = 4 \)

(a) \[\begin{array}{c}
9 \\
\end{array} \]
(b) \[\begin{array}{c}
1 \\
8 \\
\end{array} \]
(c) \[\begin{array}{c}
5 \\
5 \\
\end{array} \]
(d) \[\begin{array}{c}
8 \\
1 \\
\end{array} \]

(e) \[\begin{array}{c}
1 \\
1 \\
5 \\
\end{array} \]
(f) \[\begin{array}{c}
1 \\
5 \\
1 \\
\end{array} \]
(g) \[\begin{array}{c}
5 \\
1 \\
1 \\
\end{array} \]
(h) \[\begin{array}{c}
1 \\
1 \\
1 \\
1 \\
\end{array} \]

a. The trivial solution: enumerate all possibilities. How many different cuts exist for a rod of length \(n \) ?

b. A recursive solution: Given the maximal revenues \(r_1, \ldots, r_{n-1} \) compute the revenue \(r_n \).

Write down a recursive algorithm for the problem, and compute its time and space complexity.

c. Now making a cut costs \(c \). Modify the algorithm for this case.

Solution:

a. \(2^{n-1} \), since each segment boundary can be cut or not.

b. \(r_n = \max_{1 \leq i < n} \left(p_i + r_{n-i} \right) \), since each cut can be viewed as a composition of a piece of length \(i \), and all the other pieces.
Proof: Assume exists a revenue \(\bar{r} \) such that \(\bar{r} > r_n \). This would mean that for any \(i \in \{1, \ldots, n - 1\} \) it holds that \(\bar{r} - p_i > r_{n-i} \), which is a contradiction. We assumed that for any \(i \in \{1, \ldots, n - 1\} \), \(r_{n-i} \) is the maximal revenue.

The complexity time of the algorithm is \(O(n^2) \) and \(O(n) \) space algorithm.

2. Longest Common Subsequence
(From Introduction to Algorithms)

Given a sequence \(X = \langle x_1, \ldots, x_m \rangle \), we say that the sequence \(Z = \langle z_1, \ldots, z_k \rangle \) is a subsequence of \(X \) if there exists a strictly increasing sequence \(\langle i_1, \ldots, i_k \rangle \) such that for all \(j = 1, \ldots, k \) we have \(X_{i_j} = Z_j \). For example, \(Z = \langle B, C, D, B \rangle \) is a subsequence of \(X = \langle A, B, C, B, D, A, B \rangle \).

Given two sequences \(X, Y \) we say that \(Z \) is a common subsequence of \(X \) and \(Y \) if \(Z \) is a subsequence of both \(X \) and \(Y \). In the longest-common-subsequence (LCS) problem we are given two sequences \(X = \langle x_1, \ldots, x_m \rangle \) and \(Y = \langle y_1, \ldots, y_n \rangle \), and we need to find the maximum length common subsequence of \(X \) and \(Y \).

a. Warm-up: find the LCS of \(X = \langle A, B, C, B, D, A, B \rangle \) and \(Y = \langle B, D, C, A, B, A \rangle \).

b. Brute-force algorithm: enumeration of all subsequences. How many subsequences does \(X \) have? What is the complexity of such an algorithm?

c. Let \(X_i \) denote the \(i \)'th prefix of \(X \) : \(X_i = \langle x_1, \ldots, x_i \rangle \). Prove the following theorem:
Let $X = \langle x_1, x_2, \ldots, x_m \rangle$ and $Y = \langle y_1, y_2, \ldots, y_n \rangle$ be sequences, and let $Z = \langle z_1, z_2, \ldots, z_k \rangle$ be any LCS of X and Y.

1. If $x_m = y_n$, then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1}.
2. If $x_m \neq y_n$, then $z_k \neq x_m$ implies that Z is an LCS of X_{m-1} and Y.
3. If $x_m \neq y_n$, then $z_k \neq y_n$ implies that Z is an LCS of X and Y_{n-1}.

d. Dynamic programming algorithm: let $c[i, j]$ denote the length of the LCS of X_i and Y_j. Write a recursive formula for $c[i, j]$. Derive an algorithm for the length of the LCS of X and Y. What is its complexity?

e. (Homework) derive the actual LCS from $c[i, j]$.

Solution:

a. For example, $\langle B, C, B, A \rangle$ or $\langle B, D, A, B \rangle$.

b. 2^m

c.

Proof

1. If $z_k \neq x_m$, then we could append $x_m = y_n$ to Z to obtain a common subsequence of X and Y of length $k + 1$, contradicting the supposition that Z is a longest common subsequence of X and Y. Thus, we must have $z_k = x_m = y_n$. Now, the prefix Z_{k-1} is a length-$(k-1)$ common subsequence of X_{m-1} and Y_{n-1}.

We wish to show that it is an LCS. Suppose for the purpose of contradiction that there exists a common subsequence W of X_{m-1} and Y_{n-1} with length greater than $k - 1$. Then, appending $x_m = y_n$ to W produces a common subsequence of X and Y whose length is greater than k, which is a contradiction.

2. If $z_k \neq x_m$, then Z is a common subsequence of X_{m-1} and Y. If there were a common subsequence W of X_{m-1} and Y with length greater than k, then W would also be a common subsequence of X_m and Y, contradicting the assumption that Z is an LCS of X and Y.

3. The proof is symmetric to (2).

d. Based on the previous theorem, we have

$$c[i, j] = \begin{cases}
0 & \text{if } i = 0 \text{ or } j = 0, \\
[c[i - 1, j - 1] + 1 & \text{if } i, j > 0 \text{ and } x_i = y_j, \\
\max(c[i, j - 1], c[i - 1, j]) & \text{if } i, j > 0 \text{ and } x_i \neq y_j.
\end{cases}$$

An $O(mn)$ algorithm:
LCS-L (X, Y)
1 m = X.length
2 n = Y.length
3 let b[1..m, 1..n] and c[0..m, 0..n] be new tables
4 for i = 1 to m
5 c[i, 0] = 0
6 for j = 0 to n
7 c[0, j] = 0
8 for i = 1 to m
9 for j = 1 to n
10 if x_i == y_j
11 c[i, j] = c[i - 1, j - 1] + 1
12 b[i, j] = "\n"
13 elseif c[i - 1, j] ≥ c[i, j - 1]
14 c[i, j] = c[i - 1, j]
15 b[i, j] = "↑"
16 else c[i, j] = c[i, j - 1]
17 b[i, j] = "←"
18 return c and b