1. Review: Policy Gradient Algorithm

- Given initial parameters θ

Repeat:

- Simulate/implement a single episode $\tau = (x_0, u_0, \ldots, x_T)$ of the controlled system with policy π_θ, with $x_0 \sim P(x_0)$.

- Compute $R(\tau) = \sum_{t=0}^{T} r(x_t, u_t)$

- Compute $\hat{V} J(\theta) = R(\tau) \sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_\theta(u_t | x_t)$

- Update parameters: (ϵ is a step size)
 $$\theta := \theta + \epsilon \hat{V} J(\theta)$$

2. Policy Gradient algorithm – Softmax Policy

Consider the following policy representation:

$$\pi_\theta(u | x) = \frac{e^{\alpha \theta^T \phi(x,u)}}{\sum_u e^{\alpha \theta^T \phi(x,u)}}$$

Where $\phi(x,u)$ are state-action features.

a. Write down the policy gradient (likelihood ratio method) algorithm with the softmax policy.

Solution:

a. All that we need to modify in the algorithm from the previous section is the gradient estimator:
\[
\nabla_\theta \log \pi_\theta(u_t | x_t) = \nabla_\theta \log \left(\frac{e^{\alpha \theta^\top \phi(x,u)}}{\sum_{u'} e^{\alpha \theta^\top \phi(x,u')}} \right) \\
= \nabla_\theta \left(\alpha \theta^\top \phi(x,u) - \log \sum_{u'} e^{\alpha \theta^\top \phi(x,u')} \right) \\
= \alpha \phi(x,u) - \frac{\sum_{u'} \alpha \phi(x,u') e^{\alpha \theta^\top \phi(x,u')}}{\sum_{u'} e^{\alpha \theta^\top \phi(x,u')}}
\]

3. The Policy Gradient Theorem
Consider an episodic and stationary MDP setting with a fixed initial state \(x_0 \), and a stationary parameterized policy \(\pi_\theta \), and let \(J(\theta) = E^{\pi_\theta} \left(\sum_{t=0}^{T} R_t \right) \), where \(T \) is the time that a terminal state is reached.

a. Show that the following relation holds:
\[
\nabla_\theta J(\theta) = \sum_{t=0}^{\infty} \sum_x P(x_t = x | \pi_\theta, x_0) \sum_u \nabla_\theta \pi_\theta(u_t | x_t) Q^\pi(x,u) \quad (*)
\]

b. Show that (*) is equivalent to
\[
\nabla_\theta J(\theta) = E^{\pi} \sum_{t=0}^{T} \nabla_\theta \pi_\theta(u_t | x_t) \pi_\theta(u_t | x_t) Q^\pi(x_t, u_t)
\]

c. Consider tabular representation, i.e., we represent the true policy in its complete form, \(\theta = \{ \pi(a | s) \}_{s,a} \). Write (*) when assuming this representation.

d. What is the policy \(\pi' \) which maximizes \(\langle \nabla_\pi J(\pi), \pi' \rangle \)? i.e., the aligned in the direction in which the gradient is maximal.

Solution:
a. Recall that
\[
Q^\pi(x,u) = E^{\pi} \left(\sum_{t=0}^{T} R_t | x_0 = x, u_0 = u \right)
\]
\[
V^\pi(x) = E^{\pi} \left(\sum_{t=0}^{T} R_t | x_0 = x \right)
\]
And
\[V^\pi(x) = \sum_u \pi(u \mid x) Q^\pi(x,u). \]

Taking a gradient we have

\[\nabla_\theta V^\pi(x) = \sum_u \nabla_\theta \pi(u \mid x) Q^\pi(x,u) + \sum_u \pi(u \mid x) \nabla_\theta Q^\pi(x,u) \quad (1) \]

From the Bellman equation, recall that

\[Q^\pi(x,u) = r(x,u) + \sum_{x'} P(x' \mid x,u) V^\pi(x'), \]

Therefore

\[\nabla_\theta Q^\pi(x,u) = \sum_{x'} P(x' \mid x,u) \nabla_\theta V^\pi(x'), \]

And plugging in (1) we obtain an equation for \(\nabla_\theta V^\pi(x) \)

\[\nabla_\theta V^\pi(x) = \sum_u \left(\nabla_\theta \pi(u \mid x) Q^\pi(x,u) + \pi(u \mid x) \sum_{x'} P(x' \mid x,u) \nabla_\theta V^\pi(x') \right) \]

Note that \(J(\theta) = V^\pi(x_0), \) and we have

\[\nabla_\theta J(\theta) = \nabla_\theta V^\pi(x_0) = \sum_u \nabla_\theta \pi(u \mid x_0) Q^\pi(x_0,u) \]

\[+ \sum_u \pi(u \mid x_0) \sum_{x'} P(x' \mid x_0,u) \nabla_\theta V^\pi(x') \]

\[= \sum_u \nabla_\theta \pi(u \mid x_0) Q^\pi(x_0,u) \]

\[+ \sum_{x'} P(x' \mid x_0, \pi) \nabla_\theta V^\pi(x') \]

Unrolling \(\nabla_\theta V^\pi(x') \) once on the right hand side gives

\[\nabla_\theta J(\theta) = \sum_u \nabla_\theta \pi(u \mid x_0) Q^\pi(x_0,u) + \sum_{x'} P(x_0 = x \mid x_0, \pi) \sum_u \nabla_\theta \pi(u \mid x) Q^\pi(x,u) + \sum_{x'} P(x' \mid x_0, \pi) \nabla_\theta V^\pi(x') \]

After unrolling \(\nabla_\theta V^\pi(x') \) again and again, we obtain

\[\nabla_\theta J(\theta) = \sum_{i=0}^{\infty} \sum_{x} P(x_i = x \mid x_0, \pi) \sum_u \nabla_\theta \pi(u \mid x) Q^\pi(x,u) \]
b. By dividing and multiplying by $\pi_\theta (u \mid x)$ we have

$$\sum_{t=0}^{\infty} \sum_x P(x_t = x \mid x_0, \pi) \sum_u \nabla_\theta \pi_\theta (u \mid x) \frac{\nabla_\theta \pi_\theta (u \mid x)}{\pi_\theta (u \mid x)} \pi_\theta (u \mid x) Q^\pi (x, u) =$$

$$= \sum_{t=0}^{\infty} \sum_{x,u} P(x_t = x,u_t = u \mid x_0, \pi) \nabla_\theta \pi_\theta (u \mid x) \pi_\theta (u \mid x) Q^\pi (x, u) =$$

$$= E^\pi \sum_{t=0}^{\infty} \nabla_\theta \pi_\theta (u_t \mid x_t) Q^\pi (x_t, u_t)$$

$$= E^\pi \sum_{t=0}^{T} \nabla_\theta \pi_\theta (u_t \mid x_t) Q^\pi (x_t, u_t)$$

Where the last equation holds since the value of the terminal state is zero.

c. When using this representation, we have that

$$\nabla_\theta \pi (u \mid x) = \nabla \pi(u \mid x) \pi (u \mid x) = \delta_{u,u'} \delta_{x,x'}.$$

Plugging this into (*), we get,

$$\nabla \pi(u \mid x) J(\pi) = \sum_{t=0}^{\infty} \sum_x P(x_t = x \mid \pi, x_0) \sum_u \pi(u \mid x) Q^\pi (x, u)$$

$$= \sum_{t=0}^{\infty} \sum_{x,u} P(x_t = x \mid \pi, x_0) \delta_{u,u'} \delta_{x,x} Q^\pi (x, u)$$

$$= \sum_{t=0}^{\infty} P(x_t = x' \mid \pi, x_0) Q^\pi (x', u')$$

See that $J(\pi)$ is a scalar, and that $\nabla \pi J(\pi)$ is a vector in R^{SA}.

d. We calculate the projection explicitly, by using basic properties of inner product.

Remember that:

$$\langle \sum_i a_i, b \rangle = \sum_i \langle a_i, b \rangle$$

$$\langle \alpha a, b \rangle = \alpha \langle a, b \rangle$$

For α a constant, and vectors a, b.

Using these, we get that for any x
Thus, to maximize the inner product, we need to find the policy which maximizes \(\langle Q^\pi(x, \bullet), \pi'(\bullet | x) \rangle \) for any \(x \). By definition, this policy is the greedy policy,

\[
\pi_G(\bullet | x) = \arg \max_{\pi} \sum_u \pi(u | x)(r(x, u) + \sum_{x'} P(x' | x, u) V^\pi(x'))
\]

\[
= \arg \max_{\pi} \sum_u \pi(u | x) Q^\pi(x, u)
\]

\[
= \arg \max_{\pi} \langle Q^\pi(x, \bullet), \pi(\bullet | x) \rangle
\]