Class Tutorial 3

1. Shortest path example
Consider the following graph:

![Graph Image]

a. Run the Bellman-Ford algorithm on the graph.

b. Run Dijkstra's algorithm on the graph.

Solution

a. Bellman-Ford Algorithm.
Input: A weighted directed graph G, and destination node t.
Initialization: $d[t] = 0$, $d[v] = \infty$ for $v \in V \setminus \{t\}$, $\pi[v] = \phi$ for $v \in V$

for $i = 1$ to $|V| - 1$

d'[v] = $d[v]$, $v \in V \setminus \{t\}$

for each vertex $v \in V \setminus \{t\}$,

compute $q[v] = \min_u \{w(v,u) + d'[u] : (v,u) \in E\}$

if $q[v] < d[v]$,

set $d[v] = q[v]$. $\pi[v] \in \arg \min_u \{w(v,u) + d'[u] : (v,u) \in E\}$

return \{d[v], \pi[v]\}

Initialization:
Iteration 1:

Iteration 2:

Iteration 3:
b. Dijkstra's Algorithm.

Input: A weighted directed graph, and destination node t.

Initialization:
- $d[t] = 0$,
- $d[v] = \infty$ for $v \in V \setminus \{t\}$,
- $\pi[v] = \phi$ for $v \in V$

Let $S = \phi$.

While $S \neq V$, (***)
- Choose $u \in V \setminus S$ with minimal value $d[u]$, add it to S
- For each vertex v with $(v, u) \in E$,
 - if $d[v] > w(v, u) + d[u]$,
 - set $d[v] = w(v, u) + d[u]$, $\pi[v] = u$

Return $\{d[v], \pi[v]\}$
2. Dijkstra’s Algorithm - Correctness

We let \(d^*(v) \) denote the (true) shortest path length from node \(v \in V \) to the destination node \(t \), and let \(d(v) \) denote the value of node \(v \) during execution on Dijkstra’s algorithm. Prove the following properties:

a. Triangle inequality: for any edge \((u,v) \in E\) we have \(d^*(u) \leq w(u,v) + d^*(v) \).

b. Upper bound property: for all \(v \in V \) and at any time in the execution of the algorithm, we have \(d(v) \geq d^*(v) \). Moreover, once equality is obtained, \(d(v) \) never changes.

c. Correctness of Dijkstra’s algorithm: for a graph with non-negative weights, Dijkstra’s algorithm terminates with \(d(v) = d^*(v) \) for all \(v \in V \).
Solution

a. Suppose \(p \) is a shortest path from \(u \) to \(t \). Then \(p \) has no more weight than any other path from \(u \) to \(t \), specifically the path that goes from \(u \) to \(v \) and then continues optimally.

b. We prove by induction on the number of relaxation steps, i.e., number of executions of

\[
\text{if } d[v] > w(v,u) + d[u], \\
\text{set } d[v] = w(v,u) + d[u]
\]

For the first step this is clearly true, due to the initialization procedure.

Assume \(d(x) \leq d^*(x) \) for all \(x \in V \) prior to the relaxation step, and consider a relaxation of edge \((v,u)\). The only value that may change is \(d(v) \). If it changes we have

\[
\begin{align*}
d(v) &= w(v,u) + d(u) \\
&\geq w(v,u) + d^*(u) \\
&\geq d^*(v)
\end{align*}
\]

Where the first inequality is by the induction hypothesis, and the second by the triangle inequality. Thus, the induction invariant is maintained.

Once \(d(v) = d^*(v) \), it cannot decrease as we have now shown, and it cannot increase since relaxations only decrease values.

c. We prove the following loop invariant:

At the start of each while loop (**), we have \(d(v) = d^*(v) \) for all \(v \in S \).

It suffices to show that for all \(u \in V \) we have \(d(u) = d^*(u) \) when \(u \) is added to \(S \). By the upper-bound property, it will never change afterwards.

Initialization: initially \(S = \emptyset \) so the invariant is trivially true.

Maintenance: For the purpose of contradiction, let \(u \) be the first node added to the set \(S \) such that \(d(u) \neq d^*(u) \).

We must have \(u \neq t \) since \(t \) is the first node added to \(S \) and \(d(t) = d^*(t) = 0 \). We also have that \(S \neq \emptyset \) just before \(u \) is added. There must be a path from \(u \) to \(t \) otherwise \(d(u) = d^*(u) = \infty \). Thus, there is a shortest path \(p \) from \(u \) to \(t \).

Prior to adding \(u \) to \(S \), \(p \) connects a node in \(V - S \) to a node in \(S \). Let \(x \) denote the last node in \(p \) such that \(x \in V - S \) and let \(y \) denote \(x \)'s successor, i.e., \(y \in S \). We can decompose \(p \) into \(u \rightarrow x \rightarrow y \rightarrow t \).

We claim that \(d(x) = d^*(x) \) when \(u \) is added to \(S \). To see this, observe that \(d(y) = d^*(y) \) since \(y \in S \) and \(u \) is the first node for which this property does not hold.
Since $x \rightarrow y \rightarrow t$ is the shortest path from x to t, when y was relaxed, we had $d(x) = w(x, y) + d^*(y) = d^*(x)$.

We now obtain the contradiction. Since x appears after u on the shortest path p, and since all weights are non-negative, we must have $d^*(x) \leq d^*(u)$. Therefore

\[
d(x) = d^*(x) \\
\leq d^*(u) \\
\leq d(u)
\]

But because x and u were in $V - S$ we must also have $d(u) \leq d(x)$, therefore, $d(x) = d^*(x) = d^*(u) = d(u)$, which contradicts our definition of u.