Class Tutorial 9

1. Approximate Greedy Policy
In previous tutorial we analyzed a TD(0) policy-evaluation scheme. Generally, we would like to perform an improvement relatively to the evaluated policy value. Prove the following proposition (which is a more basic version of Theorem 11.1 from lecture notes).

a. Proposition: Let \(v^* \) be the value of the optimal policy, \(\hat{v}^* \) be an estimator of its value s.t \(|v^* - \hat{v}^*|_\infty \leq \epsilon \). Then, the Greedy policy w.r.t. \(\hat{v}^* \), \(\pi_G \), satisfies

\[
|v_{\pi_G} - v^*|_\infty \leq \frac{2\gamma \epsilon}{1 - \gamma}
\]

Solution
a. We use the fixed point properties of \(v^* \), the fact that \(T^{\pi_G} \hat{v}^* = T \hat{v}^* \), and the fact that \(T^\pi, T \) are \(\gamma \) contractions in the max norm (all discussed in lectures).

\[
|v_{\pi_G} - v^*|_\infty \leq |v_{\pi_G} - T \hat{v}^*|_\infty + |T \hat{v}^* - v^*|_\infty \\
= |T^{\pi_G} v_{\pi_G} - T^{\pi_G} \hat{v}^*|_\infty + |T \hat{v}^* - T v^*|_\infty \\
\leq \gamma |v_{\pi_G} - \hat{v}^*|_\infty + \gamma |\hat{v}^* - v^*|_\infty \\
\leq \gamma |v_{\pi_G} - v^*|_\infty + \gamma |v^* - \hat{v}^*|_\infty + \gamma |\hat{v}^* - v^*|_\infty \\
\leq \gamma |v_{\pi_G} - v^*|_\infty + 2\gamma \epsilon
\]

By moving the first term in the RHS to the LHS and dividing by \(1 - \gamma \) we conclude the proof.

2. Least Squares Temporal Difference (LSTD)
In the previous tutorial we have seen that the online TD(0) converges to a solution of the linear equation

\[
Aw = b.
\]

Now we will propose a batch algorithm that find a solution to the same equation. We are given a sequence of \(N \) state pairs \(\{s_i, s'_i\}_{i=1}^N \), where \(s_i \sim d \), and \(s'_i \sim P^\pi (s | s_i) \).

a. Suggest estimators for \(A \) and \(b \) from the data \(\{s_i, s'_i\}_{i=1}^N \).

b. Suggest a batch algorithm for finding \(w \).

Solution
a. Recall that
\[b = \Phi^\top Dr = \sum_s d(s)r(s)\phi(s) \approx \sum_{i=1}^N r(s_i)\phi(s_i) \]

And

\[A = \gamma\Phi^\top DP\Phi - \Phi^\top D\Phi \]

Therefore we similarly have

\[\Phi^\top D\Phi = \sum_s d(s)\phi(s)\phi^\top(s) \approx \sum_{i=1}^N \phi(s_i)\phi^\top(s_i) \]

And

\[\Phi^\top DP\Phi = \sum_{i,s'} d(s)P^\pi(s' | s)\phi(s)\phi(s') \approx \sum_{i=1}^N \phi(s_i)\phi^\top(s_i') \]

b. Given the data, we first form the estimates \(\hat{A}, \hat{b} \) using the estimators described above:

\[\hat{A} = \sum_{i=1}^N \phi(s_i)\left(\gamma\phi^\top(s_i') - \phi^\top(s_i)\right) \]

\[\hat{b} = \sum_{i=1}^N r(s_i)\phi(s_i) \]

We then solve the linear equation:

\[w = \hat{A}^{-1}\hat{b} \]

3. Least Squares Policy Iteration (LSPI)

In the previous question we explored batch policy evaluation with function approximation. We now propose a batch algorithm for *policy improvement* with function approximation.

Similar to evaluating the value function \(V^\pi(s) \), we can also evaluate the state-action value function \(Q^\pi(s,a) \). We approximate \(Q^\pi(s) \) using linear function approximation, i.e.,

\[\tilde{Q}^\pi(s,a) = \phi(s,a)^\top w \]

where \(\phi(s,a) \) are state-action features. We assume that the data is a sequence of \(N \) state-action-next state pairs \(\{s_i,a_i,s_i'\}_{i=1}^N \).

a. For a known policy \(\pi \), extend the LSTD algorithm to evaluating the weights for \(\tilde{Q}^\pi(s,a) \).

b. For a given weight vector \(w \), what is the greedy policy w.r.t. \(\tilde{Q}^\pi(s,a) = \phi(s,a)^\top w \)?
c. Show that LSTD can be used to evaluate the weights for $\tilde{Q}_{\pi_{\text{greedy}}}(s, a)$ of the greedy policy w.r.t. some w.

d. Suggest an algorithm that interleaves the policy evaluation of LSTD and policy improvement using the greedy policy.

Solution

a. Note that we can define an 'augmented' state space $\mathcal{S} = \{s, a\}$, and perform LSTD on the augmented space:

$$\hat{A} = \sum_{i=1}^{N} \phi(s_i, a_i) \left(\gamma \phi^\top(s_i', \pi(s_i')) - \phi^\top(s_i, a_i) \right)$$

$$\hat{b} = \sum_{i=1}^{N} r(s_i, a_i) \phi(s_i, a_i)$$

$$w = \hat{A}^{-1} \hat{b}$$

b. The greedy policy is given by

$$\pi_{\text{greedy}}(s; w) = \arg\max_a \phi(s, a)^\top w$$

c. The only change we need to make is:

$$\hat{A} = \sum_{i=1}^{N} \phi(s_i, a_i) \left(\gamma \phi^\top(s_i', \pi_{\text{greedy}}(s_i'; w)) - \phi^\top(s_i, a_i) \right)$$

d. The Least-Squares Policy Iteration (LSPI) works iteratively, as follows:

start with some arbitrary w_0

for $i = 0, 1, 2, \ldots$

$$\hat{A} = \sum_{i=1}^{N} \phi(s_i, a_i) \left(\gamma \phi^\top(s_i', \pi_{\text{greedy}}(s_i'; w_i)) - \phi^\top(s_i, a_i) \right)$$

$$\hat{b} = \sum_{i=1}^{N} r(s_i, a_i) \phi(s_i, a_i)$$

$$w_{i+1} = \hat{A}^{-1} \hat{b}$$